ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abscj GIF version

Theorem abscj 11305
Description: The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by NM, 28-Apr-2005.)
Assertion
Ref Expression
abscj (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (abs‘𝐴))

Proof of Theorem abscj
StepHypRef Expression
1 cjcl 11101 . . . 4 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
2 absval 11254 . . . 4 ((∗‘𝐴) ∈ ℂ → (abs‘(∗‘𝐴)) = (√‘((∗‘𝐴) · (∗‘(∗‘𝐴)))))
31, 2syl 14 . . 3 (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (√‘((∗‘𝐴) · (∗‘(∗‘𝐴)))))
4 mulcom 8053 . . . . . 6 ((𝐴 ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ) → (𝐴 · (∗‘𝐴)) = ((∗‘𝐴) · 𝐴))
51, 4mpdan 421 . . . . 5 (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) = ((∗‘𝐴) · 𝐴))
6 cjcj 11136 . . . . . 6 (𝐴 ∈ ℂ → (∗‘(∗‘𝐴)) = 𝐴)
76oveq2d 5959 . . . . 5 (𝐴 ∈ ℂ → ((∗‘𝐴) · (∗‘(∗‘𝐴))) = ((∗‘𝐴) · 𝐴))
85, 7eqtr4d 2240 . . . 4 (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) = ((∗‘𝐴) · (∗‘(∗‘𝐴))))
98fveq2d 5579 . . 3 (𝐴 ∈ ℂ → (√‘(𝐴 · (∗‘𝐴))) = (√‘((∗‘𝐴) · (∗‘(∗‘𝐴)))))
103, 9eqtr4d 2240 . 2 (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (√‘(𝐴 · (∗‘𝐴))))
11 absval 11254 . 2 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
1210, 11eqtr4d 2240 1 (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (abs‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wcel 2175  cfv 5270  (class class class)co 5943  cc 7922   · cmul 7929  ccj 11092  csqrt 11249  abscabs 11250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-po 4342  df-iso 4343  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-2 9094  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252
This theorem is referenced by:  abstri  11357  abscji  11401  abscjd  11443
  Copyright terms: Public domain W3C validator