ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmulgt12 GIF version

Theorem ltmulgt12 8968
Description: Multiplication by a number greater than 1. (Contributed by NM, 24-Dec-2005.)
Assertion
Ref Expression
ltmulgt12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐵𝐴 < (𝐵 · 𝐴)))

Proof of Theorem ltmulgt12
StepHypRef Expression
1 ltmulgt11 8967 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐵𝐴 < (𝐴 · 𝐵)))
2 recn 8088 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 recn 8088 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4 mulcom 8084 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
52, 3, 4syl2an 289 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
653adant3 1020 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
76breq2d 4066 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 < (𝐴 · 𝐵) ↔ 𝐴 < (𝐵 · 𝐴)))
81, 7bitrd 188 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐵𝐴 < (𝐵 · 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 981   = wceq 1373  wcel 2177   class class class wbr 4054  (class class class)co 5962  cc 7953  cr 7954  0cc0 7955  1c1 7956   · cmul 7960   < clt 8137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltadd 8071  ax-pre-mulgt0 8072
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-iota 5246  df-fun 5287  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-pnf 8139  df-mnf 8140  df-ltxr 8142  df-sub 8275  df-neg 8276
This theorem is referenced by:  ltmulgt12d  9885  dvdsnprmd  12532  coseq00topi  15392
  Copyright terms: Public domain W3C validator