![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sqabssub | GIF version |
Description: Square of absolute value of difference. (Contributed by NM, 21-Jan-2007.) |
Ref | Expression |
---|---|
sqabssub | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) − (2 · (ℜ‘(𝐴 · (∗‘𝐵)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cjsub 10885 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 − 𝐵)) = ((∗‘𝐴) − (∗‘𝐵))) | |
2 | 1 | oveq2d 5885 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) · (∗‘(𝐴 − 𝐵))) = ((𝐴 − 𝐵) · ((∗‘𝐴) − (∗‘𝐵)))) |
3 | cjcl 10841 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
4 | cjcl 10841 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (∗‘𝐵) ∈ ℂ) | |
5 | 3, 4 | anim12i 338 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ)) |
6 | mulsub 8348 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((∗‘𝐴) ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ)) → ((𝐴 − 𝐵) · ((∗‘𝐴) − (∗‘𝐵))) = (((𝐴 · (∗‘𝐴)) + ((∗‘𝐵) · 𝐵)) − ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵)))) | |
7 | 5, 6 | mpdan 421 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) · ((∗‘𝐴) − (∗‘𝐵))) = (((𝐴 · (∗‘𝐴)) + ((∗‘𝐵) · 𝐵)) − ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵)))) |
8 | 2, 7 | eqtrd 2210 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) · (∗‘(𝐴 − 𝐵))) = (((𝐴 · (∗‘𝐴)) + ((∗‘𝐵) · 𝐵)) − ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵)))) |
9 | subcl 8146 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
10 | absvalsq 11046 | . . 3 ⊢ ((𝐴 − 𝐵) ∈ ℂ → ((abs‘(𝐴 − 𝐵))↑2) = ((𝐴 − 𝐵) · (∗‘(𝐴 − 𝐵)))) | |
11 | 9, 10 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 𝐵))↑2) = ((𝐴 − 𝐵) · (∗‘(𝐴 − 𝐵)))) |
12 | absvalsq 11046 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴))) | |
13 | absvalsq 11046 | . . . . 5 ⊢ (𝐵 ∈ ℂ → ((abs‘𝐵)↑2) = (𝐵 · (∗‘𝐵))) | |
14 | mulcom 7931 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ) → (𝐵 · (∗‘𝐵)) = ((∗‘𝐵) · 𝐵)) | |
15 | 4, 14 | mpdan 421 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (𝐵 · (∗‘𝐵)) = ((∗‘𝐵) · 𝐵)) |
16 | 13, 15 | eqtrd 2210 | . . . 4 ⊢ (𝐵 ∈ ℂ → ((abs‘𝐵)↑2) = ((∗‘𝐵) · 𝐵)) |
17 | 12, 16 | oveqan12d 5888 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) = ((𝐴 · (∗‘𝐴)) + ((∗‘𝐵) · 𝐵))) |
18 | mulcl 7929 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ) → (𝐴 · (∗‘𝐵)) ∈ ℂ) | |
19 | 4, 18 | sylan2 286 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (∗‘𝐵)) ∈ ℂ) |
20 | 19 | addcjd 10950 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (∗‘𝐵)) + (∗‘(𝐴 · (∗‘𝐵)))) = (2 · (ℜ‘(𝐴 · (∗‘𝐵))))) |
21 | cjmul 10878 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ) → (∗‘(𝐴 · (∗‘𝐵))) = ((∗‘𝐴) · (∗‘(∗‘𝐵)))) | |
22 | 4, 21 | sylan2 286 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · (∗‘𝐵))) = ((∗‘𝐴) · (∗‘(∗‘𝐵)))) |
23 | cjcj 10876 | . . . . . . . 8 ⊢ (𝐵 ∈ ℂ → (∗‘(∗‘𝐵)) = 𝐵) | |
24 | 23 | adantl 277 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(∗‘𝐵)) = 𝐵) |
25 | 24 | oveq2d 5885 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) · (∗‘(∗‘𝐵))) = ((∗‘𝐴) · 𝐵)) |
26 | 22, 25 | eqtrd 2210 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · (∗‘𝐵))) = ((∗‘𝐴) · 𝐵)) |
27 | 26 | oveq2d 5885 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (∗‘𝐵)) + (∗‘(𝐴 · (∗‘𝐵)))) = ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵))) |
28 | 20, 27 | eqtr3d 2212 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (ℜ‘(𝐴 · (∗‘𝐵)))) = ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵))) |
29 | 17, 28 | oveq12d 5887 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) − (2 · (ℜ‘(𝐴 · (∗‘𝐵))))) = (((𝐴 · (∗‘𝐴)) + ((∗‘𝐵) · 𝐵)) − ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵)))) |
30 | 8, 11, 29 | 3eqtr4d 2220 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) − (2 · (ℜ‘(𝐴 · (∗‘𝐵)))))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ‘cfv 5212 (class class class)co 5869 ℂcc 7800 + caddc 7805 · cmul 7807 − cmin 8118 2c2 8959 ↑cexp 10505 ∗ccj 10832 ℜcre 10833 abscabs 10990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4115 ax-sep 4118 ax-nul 4126 ax-pow 4171 ax-pr 4206 ax-un 4430 ax-setind 4533 ax-iinf 4584 ax-cnex 7893 ax-resscn 7894 ax-1cn 7895 ax-1re 7896 ax-icn 7897 ax-addcl 7898 ax-addrcl 7899 ax-mulcl 7900 ax-mulrcl 7901 ax-addcom 7902 ax-mulcom 7903 ax-addass 7904 ax-mulass 7905 ax-distr 7906 ax-i2m1 7907 ax-0lt1 7908 ax-1rid 7909 ax-0id 7910 ax-rnegex 7911 ax-precex 7912 ax-cnre 7913 ax-pre-ltirr 7914 ax-pre-ltwlin 7915 ax-pre-lttrn 7916 ax-pre-apti 7917 ax-pre-ltadd 7918 ax-pre-mulgt0 7919 ax-pre-mulext 7920 ax-arch 7921 ax-caucvg 7922 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-iun 3886 df-br 4001 df-opab 4062 df-mpt 4063 df-tr 4099 df-id 4290 df-po 4293 df-iso 4294 df-iord 4363 df-on 4365 df-ilim 4366 df-suc 4368 df-iom 4587 df-xp 4629 df-rel 4630 df-cnv 4631 df-co 4632 df-dm 4633 df-rn 4634 df-res 4635 df-ima 4636 df-iota 5174 df-fun 5214 df-fn 5215 df-f 5216 df-f1 5217 df-fo 5218 df-f1o 5219 df-fv 5220 df-riota 5825 df-ov 5872 df-oprab 5873 df-mpo 5874 df-1st 6135 df-2nd 6136 df-recs 6300 df-frec 6386 df-pnf 7984 df-mnf 7985 df-xr 7986 df-ltxr 7987 df-le 7988 df-sub 8120 df-neg 8121 df-reap 8522 df-ap 8529 df-div 8619 df-inn 8909 df-2 8967 df-3 8968 df-4 8969 df-n0 9166 df-z 9243 df-uz 9518 df-rp 9641 df-seqfrec 10432 df-exp 10506 df-cj 10835 df-re 10836 df-im 10837 df-rsqrt 10991 df-abs 10992 |
This theorem is referenced by: sqabssubi 11146 |
Copyright terms: Public domain | W3C validator |