![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > coprmdvds | GIF version |
Description: Euclid's Lemma (see ProofWiki "Euclid's Lemma", 10-Jul-2021, https://proofwiki.org/wiki/Euclid's_Lemma): If an integer divides the product of two integers and is coprime to one of them, then it divides the other. See also theorem 1.5 in [ApostolNT] p. 16. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by AV, 10-Jul-2021.) |
Ref | Expression |
---|---|
coprmdvds | ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀 · 𝑁) ∧ (𝐾 gcd 𝑀) = 1) → 𝐾 ∥ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 8957 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
2 | zcn 8957 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
3 | mulcom 7667 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 · 𝑁) = (𝑁 · 𝑀)) | |
4 | 1, 2, 3 | syl2an 285 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) = (𝑁 · 𝑀)) |
5 | 4 | breq2d 3905 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ (𝑀 · 𝑁) ↔ 𝐾 ∥ (𝑁 · 𝑀))) |
6 | dvdsmulgcd 11553 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 ∥ (𝑁 · 𝑀) ↔ 𝐾 ∥ (𝑁 · (𝑀 gcd 𝐾)))) | |
7 | 6 | ancoms 266 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ (𝑁 · 𝑀) ↔ 𝐾 ∥ (𝑁 · (𝑀 gcd 𝐾)))) |
8 | 5, 7 | bitrd 187 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ (𝑀 · 𝑁) ↔ 𝐾 ∥ (𝑁 · (𝑀 gcd 𝐾)))) |
9 | 8 | 3adant1 980 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ (𝑀 · 𝑁) ↔ 𝐾 ∥ (𝑁 · (𝑀 gcd 𝐾)))) |
10 | 9 | adantr 272 | . . . . . 6 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 ∥ (𝑀 · 𝑁) ↔ 𝐾 ∥ (𝑁 · (𝑀 gcd 𝐾)))) |
11 | gcdcom 11504 | . . . . . . . . . . . 12 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 gcd 𝑀) = (𝑀 gcd 𝐾)) | |
12 | 11 | 3adant3 982 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑀) = (𝑀 gcd 𝐾)) |
13 | 12 | eqeq1d 2121 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑀) = 1 ↔ (𝑀 gcd 𝐾) = 1)) |
14 | oveq2 5734 | . . . . . . . . . 10 ⊢ ((𝑀 gcd 𝐾) = 1 → (𝑁 · (𝑀 gcd 𝐾)) = (𝑁 · 1)) | |
15 | 13, 14 | syl6bi 162 | . . . . . . . . 9 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑀) = 1 → (𝑁 · (𝑀 gcd 𝐾)) = (𝑁 · 1))) |
16 | 15 | imp 123 | . . . . . . . 8 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑀) = 1) → (𝑁 · (𝑀 gcd 𝐾)) = (𝑁 · 1)) |
17 | 2 | mulid1d 7701 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → (𝑁 · 1) = 𝑁) |
18 | 17 | 3ad2ant3 985 | . . . . . . . . 9 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 · 1) = 𝑁) |
19 | 18 | adantr 272 | . . . . . . . 8 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑀) = 1) → (𝑁 · 1) = 𝑁) |
20 | 16, 19 | eqtrd 2145 | . . . . . . 7 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑀) = 1) → (𝑁 · (𝑀 gcd 𝐾)) = 𝑁) |
21 | 20 | breq2d 3905 | . . . . . 6 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 ∥ (𝑁 · (𝑀 gcd 𝐾)) ↔ 𝐾 ∥ 𝑁)) |
22 | 10, 21 | bitrd 187 | . . . . 5 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 ∥ (𝑀 · 𝑁) ↔ 𝐾 ∥ 𝑁)) |
23 | 22 | biimpd 143 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 ∥ (𝑀 · 𝑁) → 𝐾 ∥ 𝑁)) |
24 | 23 | ex 114 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑀) = 1 → (𝐾 ∥ (𝑀 · 𝑁) → 𝐾 ∥ 𝑁))) |
25 | 24 | com23 78 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ (𝑀 · 𝑁) → ((𝐾 gcd 𝑀) = 1 → 𝐾 ∥ 𝑁))) |
26 | 25 | impd 252 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀 · 𝑁) ∧ (𝐾 gcd 𝑀) = 1) → 𝐾 ∥ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 943 = wceq 1312 ∈ wcel 1461 class class class wbr 3893 (class class class)co 5726 ℂcc 7539 1c1 7542 · cmul 7546 ℤcz 8952 ∥ cdvds 11335 gcd cgcd 11477 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-coll 4001 ax-sep 4004 ax-nul 4012 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-iinf 4460 ax-cnex 7630 ax-resscn 7631 ax-1cn 7632 ax-1re 7633 ax-icn 7634 ax-addcl 7635 ax-addrcl 7636 ax-mulcl 7637 ax-mulrcl 7638 ax-addcom 7639 ax-mulcom 7640 ax-addass 7641 ax-mulass 7642 ax-distr 7643 ax-i2m1 7644 ax-0lt1 7645 ax-1rid 7646 ax-0id 7647 ax-rnegex 7648 ax-precex 7649 ax-cnre 7650 ax-pre-ltirr 7651 ax-pre-ltwlin 7652 ax-pre-lttrn 7653 ax-pre-apti 7654 ax-pre-ltadd 7655 ax-pre-mulgt0 7656 ax-pre-mulext 7657 ax-arch 7658 ax-caucvg 7659 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-3or 944 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-nel 2376 df-ral 2393 df-rex 2394 df-reu 2395 df-rmo 2396 df-rab 2397 df-v 2657 df-sbc 2877 df-csb 2970 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-nul 3328 df-if 3439 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-int 3736 df-iun 3779 df-br 3894 df-opab 3948 df-mpt 3949 df-tr 3985 df-id 4173 df-po 4176 df-iso 4177 df-iord 4246 df-on 4248 df-ilim 4249 df-suc 4251 df-iom 4463 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-f1 5084 df-fo 5085 df-f1o 5086 df-fv 5087 df-riota 5682 df-ov 5729 df-oprab 5730 df-mpo 5731 df-1st 5990 df-2nd 5991 df-recs 6154 df-frec 6240 df-sup 6821 df-pnf 7720 df-mnf 7721 df-xr 7722 df-ltxr 7723 df-le 7724 df-sub 7852 df-neg 7853 df-reap 8249 df-ap 8256 df-div 8340 df-inn 8625 df-2 8683 df-3 8684 df-4 8685 df-n0 8876 df-z 8953 df-uz 9223 df-q 9308 df-rp 9338 df-fz 9678 df-fzo 9807 df-fl 9930 df-mod 9983 df-seqfrec 10106 df-exp 10180 df-cj 10501 df-re 10502 df-im 10503 df-rsqrt 10656 df-abs 10657 df-dvds 11336 df-gcd 11478 |
This theorem is referenced by: coprmdvds2 11614 qredeq 11617 cncongr1 11624 euclemma 11664 |
Copyright terms: Public domain | W3C validator |