| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > coprmdvds | GIF version | ||
| Description: Euclid's Lemma (see ProofWiki "Euclid's Lemma", 10-Jul-2021, https://proofwiki.org/wiki/Euclid's_Lemma): If an integer divides the product of two integers and is coprime to one of them, then it divides the other. See also theorem 1.5 in [ApostolNT] p. 16. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by AV, 10-Jul-2021.) |
| Ref | Expression |
|---|---|
| coprmdvds | ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀 · 𝑁) ∧ (𝐾 gcd 𝑀) = 1) → 𝐾 ∥ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9377 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 2 | zcn 9377 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 3 | mulcom 8054 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 · 𝑁) = (𝑁 · 𝑀)) | |
| 4 | 1, 2, 3 | syl2an 289 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) = (𝑁 · 𝑀)) |
| 5 | 4 | breq2d 4056 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ (𝑀 · 𝑁) ↔ 𝐾 ∥ (𝑁 · 𝑀))) |
| 6 | dvdsmulgcd 12346 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 ∥ (𝑁 · 𝑀) ↔ 𝐾 ∥ (𝑁 · (𝑀 gcd 𝐾)))) | |
| 7 | 6 | ancoms 268 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ (𝑁 · 𝑀) ↔ 𝐾 ∥ (𝑁 · (𝑀 gcd 𝐾)))) |
| 8 | 5, 7 | bitrd 188 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ (𝑀 · 𝑁) ↔ 𝐾 ∥ (𝑁 · (𝑀 gcd 𝐾)))) |
| 9 | 8 | 3adant1 1018 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ (𝑀 · 𝑁) ↔ 𝐾 ∥ (𝑁 · (𝑀 gcd 𝐾)))) |
| 10 | 9 | adantr 276 | . . . . . 6 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 ∥ (𝑀 · 𝑁) ↔ 𝐾 ∥ (𝑁 · (𝑀 gcd 𝐾)))) |
| 11 | gcdcom 12294 | . . . . . . . . . . . 12 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 gcd 𝑀) = (𝑀 gcd 𝐾)) | |
| 12 | 11 | 3adant3 1020 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑀) = (𝑀 gcd 𝐾)) |
| 13 | 12 | eqeq1d 2214 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑀) = 1 ↔ (𝑀 gcd 𝐾) = 1)) |
| 14 | oveq2 5952 | . . . . . . . . . 10 ⊢ ((𝑀 gcd 𝐾) = 1 → (𝑁 · (𝑀 gcd 𝐾)) = (𝑁 · 1)) | |
| 15 | 13, 14 | biimtrdi 163 | . . . . . . . . 9 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑀) = 1 → (𝑁 · (𝑀 gcd 𝐾)) = (𝑁 · 1))) |
| 16 | 15 | imp 124 | . . . . . . . 8 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑀) = 1) → (𝑁 · (𝑀 gcd 𝐾)) = (𝑁 · 1)) |
| 17 | 2 | mulridd 8089 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → (𝑁 · 1) = 𝑁) |
| 18 | 17 | 3ad2ant3 1023 | . . . . . . . . 9 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 · 1) = 𝑁) |
| 19 | 18 | adantr 276 | . . . . . . . 8 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑀) = 1) → (𝑁 · 1) = 𝑁) |
| 20 | 16, 19 | eqtrd 2238 | . . . . . . 7 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑀) = 1) → (𝑁 · (𝑀 gcd 𝐾)) = 𝑁) |
| 21 | 20 | breq2d 4056 | . . . . . 6 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 ∥ (𝑁 · (𝑀 gcd 𝐾)) ↔ 𝐾 ∥ 𝑁)) |
| 22 | 10, 21 | bitrd 188 | . . . . 5 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 ∥ (𝑀 · 𝑁) ↔ 𝐾 ∥ 𝑁)) |
| 23 | 22 | biimpd 144 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 ∥ (𝑀 · 𝑁) → 𝐾 ∥ 𝑁)) |
| 24 | 23 | ex 115 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑀) = 1 → (𝐾 ∥ (𝑀 · 𝑁) → 𝐾 ∥ 𝑁))) |
| 25 | 24 | com23 78 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ (𝑀 · 𝑁) → ((𝐾 gcd 𝑀) = 1 → 𝐾 ∥ 𝑁))) |
| 26 | 25 | impd 254 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀 · 𝑁) ∧ (𝐾 gcd 𝑀) = 1) → 𝐾 ∥ 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2176 class class class wbr 4044 (class class class)co 5944 ℂcc 7923 1c1 7926 · cmul 7930 ℤcz 9372 ∥ cdvds 12098 gcd cgcd 12274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 ax-caucvg 8045 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-sup 7086 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-n0 9296 df-z 9373 df-uz 9649 df-q 9741 df-rp 9776 df-fz 10131 df-fzo 10265 df-fl 10413 df-mod 10468 df-seqfrec 10593 df-exp 10684 df-cj 11153 df-re 11154 df-im 11155 df-rsqrt 11309 df-abs 11310 df-dvds 12099 df-gcd 12275 |
| This theorem is referenced by: coprmdvds2 12415 qredeq 12418 cncongr1 12425 euclemma 12468 eulerthlemh 12553 eulerthlemth 12554 prmdiveq 12558 prmpwdvds 12678 mpodvdsmulf1o 15462 perfectlem1 15471 lgseisenlem1 15547 lgseisenlem2 15548 lgsquadlem2 15555 lgsquadlem3 15556 2sqlem8 15600 |
| Copyright terms: Public domain | W3C validator |