ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coprmdvds GIF version

Theorem coprmdvds 12024
Description: Euclid's Lemma (see ProofWiki "Euclid's Lemma", 10-Jul-2021, https://proofwiki.org/wiki/Euclid's_Lemma): If an integer divides the product of two integers and is coprime to one of them, then it divides the other. See also theorem 1.5 in [ApostolNT] p. 16. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by AV, 10-Jul-2021.)
Assertion
Ref Expression
coprmdvds ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀 · 𝑁) ∧ (𝐾 gcd 𝑀) = 1) → 𝐾𝑁))

Proof of Theorem coprmdvds
StepHypRef Expression
1 zcn 9196 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
2 zcn 9196 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3 mulcom 7882 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 · 𝑁) = (𝑁 · 𝑀))
41, 2, 3syl2an 287 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) = (𝑁 · 𝑀))
54breq2d 3994 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ (𝑀 · 𝑁) ↔ 𝐾 ∥ (𝑁 · 𝑀)))
6 dvdsmulgcd 11958 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 ∥ (𝑁 · 𝑀) ↔ 𝐾 ∥ (𝑁 · (𝑀 gcd 𝐾))))
76ancoms 266 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ (𝑁 · 𝑀) ↔ 𝐾 ∥ (𝑁 · (𝑀 gcd 𝐾))))
85, 7bitrd 187 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ (𝑀 · 𝑁) ↔ 𝐾 ∥ (𝑁 · (𝑀 gcd 𝐾))))
983adant1 1005 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ (𝑀 · 𝑁) ↔ 𝐾 ∥ (𝑁 · (𝑀 gcd 𝐾))))
109adantr 274 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 ∥ (𝑀 · 𝑁) ↔ 𝐾 ∥ (𝑁 · (𝑀 gcd 𝐾))))
11 gcdcom 11906 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 gcd 𝑀) = (𝑀 gcd 𝐾))
12113adant3 1007 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑀) = (𝑀 gcd 𝐾))
1312eqeq1d 2174 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑀) = 1 ↔ (𝑀 gcd 𝐾) = 1))
14 oveq2 5850 . . . . . . . . . 10 ((𝑀 gcd 𝐾) = 1 → (𝑁 · (𝑀 gcd 𝐾)) = (𝑁 · 1))
1513, 14syl6bi 162 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑀) = 1 → (𝑁 · (𝑀 gcd 𝐾)) = (𝑁 · 1)))
1615imp 123 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑀) = 1) → (𝑁 · (𝑀 gcd 𝐾)) = (𝑁 · 1))
172mulid1d 7916 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝑁 · 1) = 𝑁)
18173ad2ant3 1010 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 · 1) = 𝑁)
1918adantr 274 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑀) = 1) → (𝑁 · 1) = 𝑁)
2016, 19eqtrd 2198 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑀) = 1) → (𝑁 · (𝑀 gcd 𝐾)) = 𝑁)
2120breq2d 3994 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 ∥ (𝑁 · (𝑀 gcd 𝐾)) ↔ 𝐾𝑁))
2210, 21bitrd 187 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 ∥ (𝑀 · 𝑁) ↔ 𝐾𝑁))
2322biimpd 143 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 ∥ (𝑀 · 𝑁) → 𝐾𝑁))
2423ex 114 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑀) = 1 → (𝐾 ∥ (𝑀 · 𝑁) → 𝐾𝑁)))
2524com23 78 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ (𝑀 · 𝑁) → ((𝐾 gcd 𝑀) = 1 → 𝐾𝑁)))
2625impd 252 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀 · 𝑁) ∧ (𝐾 gcd 𝑀) = 1) → 𝐾𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136   class class class wbr 3982  (class class class)co 5842  cc 7751  1c1 7754   · cmul 7758  cz 9191  cdvds 11727   gcd cgcd 11875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-sup 6949  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-gcd 11876
This theorem is referenced by:  coprmdvds2  12025  qredeq  12028  cncongr1  12035  euclemma  12078  eulerthlemh  12163  eulerthlemth  12164  prmdiveq  12168  prmpwdvds  12285  2sqlem8  13599
  Copyright terms: Public domain W3C validator