ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negidi GIF version

Theorem negidi 8341
Description: Addition of a number and its negative. (Contributed by NM, 26-Nov-1994.)
Hypothesis
Ref Expression
negidi.1 𝐴 ∈ ℂ
Assertion
Ref Expression
negidi (𝐴 + -𝐴) = 0

Proof of Theorem negidi
StepHypRef Expression
1 negidi.1 . 2 𝐴 ∈ ℂ
2 negid 8319 . 2 (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0)
31, 2ax-mp 5 1 (𝐴 + -𝐴) = 0
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2176  (class class class)co 5944  cc 7923  0cc0 7925   + caddc 7928  -cneg 8244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-setind 4585  ax-resscn 8017  ax-1cn 8018  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-sub 8245  df-neg 8246
This theorem is referenced by:  negdii  8356  1pneg1e0  9147
  Copyright terms: Public domain W3C validator