![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1pneg1e0 | GIF version |
Description: 1 + -1 is 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
1pneg1e0 | ⊢ (1 + -1) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7955 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | negidi 8278 | 1 ⊢ (1 + -1) = 0 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5910 0cc0 7862 1c1 7863 + caddc 7865 -cneg 8181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-setind 4565 ax-resscn 7954 ax-1cn 7955 ax-icn 7957 ax-addcl 7958 ax-addrcl 7959 ax-mulcl 7960 ax-addcom 7962 ax-addass 7964 ax-distr 7966 ax-i2m1 7967 ax-0id 7970 ax-rnegex 7971 ax-cnre 7973 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4322 df-xp 4661 df-rel 4662 df-cnv 4663 df-co 4664 df-dm 4665 df-iota 5207 df-fun 5248 df-fv 5254 df-riota 5865 df-ov 5913 df-oprab 5914 df-mpo 5915 df-sub 8182 df-neg 8183 |
This theorem is referenced by: peano2z 9343 bernneq 10718 geosergap 11636 n2dvdsm1 12041 eulerid 14879 lgsdir2lem3 15088 m1lgs 15130 |
Copyright terms: Public domain | W3C validator |