| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2nn0 | GIF version | ||
| Description: Second Peano postulate for nonnegative integers. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| peano2nn0 | ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 9267 | . 2 ⊢ 1 ∈ ℕ0 | |
| 2 | nn0addcl 9286 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 1 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ0) | |
| 3 | 1, 2 | mpan2 425 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 (class class class)co 5923 1c1 7882 + caddc 7884 ℕ0cn0 9251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-addcom 7981 ax-addass 7983 ax-i2m1 7986 ax-0id 7989 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5926 df-inn 8993 df-n0 9252 |
| This theorem is referenced by: peano2z 9364 nn0split 10213 fzonn0p1p1 10291 elfzom1p1elfzo 10292 frecfzennn 10520 leexp2r 10687 facdiv 10832 facwordi 10834 faclbnd 10835 faclbnd2 10836 faclbnd3 10837 faclbnd6 10838 bcnp1n 10853 bcp1m1 10859 bcpasc 10860 hashfz 10915 bcxmas 11656 geolim 11678 geo2sum 11681 mertenslemub 11701 mertenslemi1 11702 mertenslem2 11703 mertensabs 11704 efcllemp 11825 eftlub 11857 efsep 11858 effsumlt 11859 nn0ob 12075 nn0oddm1d2 12076 bitsp1 12118 nn0seqcvgd 12219 algcvg 12226 pw2dvdseulemle 12345 2sqpwodd 12354 nonsq 12385 pcprendvds 12469 pcpremul 12472 pcdvdsb 12499 4sqlem11 12580 ennnfonelemp1 12633 ennnfonelemkh 12639 ennnfonelemim 12651 elply2 14981 plyaddlem1 14993 plymullem1 14994 plycoeid3 15003 plycolemc 15004 dvply1 15011 dvply2g 15012 perfectlem1 15245 2lgslem3d1 15351 |
| Copyright terms: Public domain | W3C validator |