| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2nn0 | GIF version | ||
| Description: Second Peano postulate for nonnegative integers. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| peano2nn0 | ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 9310 | . 2 ⊢ 1 ∈ ℕ0 | |
| 2 | nn0addcl 9329 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 1 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ0) | |
| 3 | 1, 2 | mpan2 425 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 (class class class)co 5943 1c1 7925 + caddc 7927 ℕ0cn0 9294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0id 8032 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-iota 5231 df-fv 5278 df-ov 5946 df-inn 9036 df-n0 9295 |
| This theorem is referenced by: peano2z 9407 nn0split 10257 fzonn0p1p1 10340 elfzom1p1elfzo 10341 frecfzennn 10569 leexp2r 10736 facdiv 10881 facwordi 10883 faclbnd 10884 faclbnd2 10885 faclbnd3 10886 faclbnd6 10887 bcnp1n 10902 bcp1m1 10908 bcpasc 10909 hashfz 10964 bcxmas 11742 geolim 11764 geo2sum 11767 mertenslemub 11787 mertenslemi1 11788 mertenslem2 11789 mertensabs 11790 efcllemp 11911 eftlub 11943 efsep 11944 effsumlt 11945 nn0ob 12161 nn0oddm1d2 12162 bitsp1 12204 nn0seqcvgd 12305 algcvg 12312 pw2dvdseulemle 12431 2sqpwodd 12440 nonsq 12471 pcprendvds 12555 pcpremul 12558 pcdvdsb 12585 4sqlem11 12666 ennnfonelemp1 12719 ennnfonelemkh 12725 ennnfonelemim 12737 elply2 15149 plyaddlem1 15161 plymullem1 15162 plycoeid3 15171 plycolemc 15172 dvply1 15179 dvply2g 15180 perfectlem1 15413 2lgslem3d1 15519 |
| Copyright terms: Public domain | W3C validator |