ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2nn0 GIF version

Theorem peano2nn0 8683
Description: Second Peano postulate for nonnegative integers. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
peano2nn0 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)

Proof of Theorem peano2nn0
StepHypRef Expression
1 1nn0 8659 . 2 1 ∈ ℕ0
2 nn0addcl 8678 . 2 ((𝑁 ∈ ℕ0 ∧ 1 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ0)
31, 2mpan2 416 1 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1438  (class class class)co 5634  1c1 7330   + caddc 7332  0cn0 8643
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-addcom 7424  ax-addass 7426  ax-i2m1 7429  ax-0id 7432
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-iota 4967  df-fv 5010  df-ov 5637  df-inn 8395  df-n0 8644
This theorem is referenced by:  peano2z  8756  nn0split  9512  fzonn0p1p1  9589  elfzom1p1elfzo  9590  frecfzennn  9798  leexp2r  9974  facdiv  10111  facwordi  10113  faclbnd  10114  faclbnd2  10115  faclbnd3  10116  faclbnd6  10117  bcnp1n  10132  bcp1m1  10138  bcpasc  10139  hashfz  10194  bcxmas  10845  geolim  10866  geo2sum  10869  nn0ob  10990  nn0oddm1d2  10991  nn0seqcvgd  11105  ialgcvg  11112  pw2dvdseulemle  11227  2sqpwodd  11236  nonsq  11267
  Copyright terms: Public domain W3C validator