| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2nn0 | GIF version | ||
| Description: Second Peano postulate for nonnegative integers. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| peano2nn0 | ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 9284 | . 2 ⊢ 1 ∈ ℕ0 | |
| 2 | nn0addcl 9303 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 1 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ0) | |
| 3 | 1, 2 | mpan2 425 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 (class class class)co 5925 1c1 7899 + caddc 7901 ℕ0cn0 9268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-i2m1 8003 ax-0id 8006 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9010 df-n0 9269 |
| This theorem is referenced by: peano2z 9381 nn0split 10230 fzonn0p1p1 10308 elfzom1p1elfzo 10309 frecfzennn 10537 leexp2r 10704 facdiv 10849 facwordi 10851 faclbnd 10852 faclbnd2 10853 faclbnd3 10854 faclbnd6 10855 bcnp1n 10870 bcp1m1 10876 bcpasc 10877 hashfz 10932 bcxmas 11673 geolim 11695 geo2sum 11698 mertenslemub 11718 mertenslemi1 11719 mertenslem2 11720 mertensabs 11721 efcllemp 11842 eftlub 11874 efsep 11875 effsumlt 11876 nn0ob 12092 nn0oddm1d2 12093 bitsp1 12135 nn0seqcvgd 12236 algcvg 12243 pw2dvdseulemle 12362 2sqpwodd 12371 nonsq 12402 pcprendvds 12486 pcpremul 12489 pcdvdsb 12516 4sqlem11 12597 ennnfonelemp1 12650 ennnfonelemkh 12656 ennnfonelemim 12668 elply2 15079 plyaddlem1 15091 plymullem1 15092 plycoeid3 15101 plycolemc 15102 dvply1 15109 dvply2g 15110 perfectlem1 15343 2lgslem3d1 15449 |
| Copyright terms: Public domain | W3C validator |