| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2nn0 | GIF version | ||
| Description: Second Peano postulate for nonnegative integers. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| peano2nn0 | ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 9381 | . 2 ⊢ 1 ∈ ℕ0 | |
| 2 | nn0addcl 9400 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 1 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ0) | |
| 3 | 1, 2 | mpan2 425 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 (class class class)co 6000 1c1 7996 + caddc 7998 ℕ0cn0 9365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0id 8103 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-inn 9107 df-n0 9366 |
| This theorem is referenced by: peano2z 9478 nn0split 10328 fzonn0p1p1 10414 elfzom1p1elfzo 10415 frecfzennn 10643 leexp2r 10810 facdiv 10955 facwordi 10957 faclbnd 10958 faclbnd2 10959 faclbnd3 10960 faclbnd6 10961 bcnp1n 10976 bcp1m1 10982 bcpasc 10983 hashfz 11038 ffz0iswrdnn0 11093 pfxccatpfx2 11264 pfxccat3a 11265 bcxmas 11995 geolim 12017 geo2sum 12020 mertenslemub 12040 mertenslemi1 12041 mertenslem2 12042 mertensabs 12043 efcllemp 12164 eftlub 12196 efsep 12197 effsumlt 12198 nn0ob 12414 nn0oddm1d2 12415 bitsp1 12457 nn0seqcvgd 12558 algcvg 12565 pw2dvdseulemle 12684 2sqpwodd 12693 nonsq 12724 pcprendvds 12808 pcpremul 12811 pcdvdsb 12838 4sqlem11 12919 ennnfonelemp1 12972 ennnfonelemkh 12978 ennnfonelemim 12990 elply2 15403 plyaddlem1 15415 plymullem1 15416 plycoeid3 15425 plycolemc 15426 dvply1 15433 dvply2g 15434 perfectlem1 15667 2lgslem3d1 15773 |
| Copyright terms: Public domain | W3C validator |