| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2nn0 | GIF version | ||
| Description: Second Peano postulate for nonnegative integers. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| peano2nn0 | ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 9331 | . 2 ⊢ 1 ∈ ℕ0 | |
| 2 | nn0addcl 9350 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 1 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ0) | |
| 3 | 1, 2 | mpan2 425 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 (class class class)co 5957 1c1 7946 + caddc 7948 ℕ0cn0 9315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4170 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-i2m1 8050 ax-0id 8053 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 df-inn 9057 df-n0 9316 |
| This theorem is referenced by: peano2z 9428 nn0split 10278 fzonn0p1p1 10364 elfzom1p1elfzo 10365 frecfzennn 10593 leexp2r 10760 facdiv 10905 facwordi 10907 faclbnd 10908 faclbnd2 10909 faclbnd3 10910 faclbnd6 10911 bcnp1n 10926 bcp1m1 10932 bcpasc 10933 hashfz 10988 bcxmas 11875 geolim 11897 geo2sum 11900 mertenslemub 11920 mertenslemi1 11921 mertenslem2 11922 mertensabs 11923 efcllemp 12044 eftlub 12076 efsep 12077 effsumlt 12078 nn0ob 12294 nn0oddm1d2 12295 bitsp1 12337 nn0seqcvgd 12438 algcvg 12445 pw2dvdseulemle 12564 2sqpwodd 12573 nonsq 12604 pcprendvds 12688 pcpremul 12691 pcdvdsb 12718 4sqlem11 12799 ennnfonelemp1 12852 ennnfonelemkh 12858 ennnfonelemim 12870 elply2 15282 plyaddlem1 15294 plymullem1 15295 plycoeid3 15304 plycolemc 15305 dvply1 15312 dvply2g 15313 perfectlem1 15546 2lgslem3d1 15652 |
| Copyright terms: Public domain | W3C validator |