Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano2nn0 | GIF version |
Description: Second Peano postulate for nonnegative integers. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
peano2nn0 | ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 9126 | . 2 ⊢ 1 ∈ ℕ0 | |
2 | nn0addcl 9145 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 1 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ0) | |
3 | 1, 2 | mpan2 422 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 (class class class)co 5841 1c1 7750 + caddc 7752 ℕ0cn0 9110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4099 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-i2m1 7854 ax-0id 7857 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 df-inn 8854 df-n0 9111 |
This theorem is referenced by: peano2z 9223 nn0split 10067 fzonn0p1p1 10144 elfzom1p1elfzo 10145 frecfzennn 10357 leexp2r 10505 facdiv 10647 facwordi 10649 faclbnd 10650 faclbnd2 10651 faclbnd3 10652 faclbnd6 10653 bcnp1n 10668 bcp1m1 10674 bcpasc 10675 hashfz 10730 bcxmas 11426 geolim 11448 geo2sum 11451 mertenslemub 11471 mertenslemi1 11472 mertenslem2 11473 mertensabs 11474 efcllemp 11595 eftlub 11627 efsep 11628 effsumlt 11629 nn0ob 11841 nn0oddm1d2 11842 nn0seqcvgd 11969 algcvg 11976 pw2dvdseulemle 12095 2sqpwodd 12104 nonsq 12135 pcprendvds 12218 pcpremul 12221 pcdvdsb 12247 ennnfonelemp1 12335 ennnfonelemkh 12341 ennnfonelemim 12353 |
Copyright terms: Public domain | W3C validator |