ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  npncan3 GIF version

Theorem npncan3 7774
Description: Cancellation law for subtraction. (Contributed by Scott Fenton, 23-Jun-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
npncan3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) + (𝐶𝐴)) = (𝐶𝐵))

Proof of Theorem npncan3
StepHypRef Expression
1 simp1 944 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ)
2 subcl 7735 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐶𝐴) ∈ ℂ)
32ancoms 265 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶𝐴) ∈ ℂ)
433adant2 963 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶𝐴) ∈ ℂ)
5 simp2 945 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ)
6 addsub 7747 . . 3 ((𝐴 ∈ ℂ ∧ (𝐶𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (𝐶𝐴)) − 𝐵) = ((𝐴𝐵) + (𝐶𝐴)))
71, 4, 5, 6syl3anc 1175 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + (𝐶𝐴)) − 𝐵) = ((𝐴𝐵) + (𝐶𝐴)))
8 pncan3 7744 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐶𝐴)) = 𝐶)
983adant2 963 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐶𝐴)) = 𝐶)
109oveq1d 5681 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + (𝐶𝐴)) − 𝐵) = (𝐶𝐵))
117, 10eqtr3d 2123 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) + (𝐶𝐴)) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 925   = wceq 1290  wcel 1439  (class class class)co 5666  cc 7402   + caddc 7407  cmin 7707
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-setind 4366  ax-resscn 7491  ax-1cn 7492  ax-icn 7494  ax-addcl 7495  ax-addrcl 7496  ax-mulcl 7497  ax-addcom 7499  ax-addass 7501  ax-distr 7503  ax-i2m1 7504  ax-0id 7507  ax-rnegex 7508  ax-cnre 7510
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-id 4129  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-iota 4993  df-fun 5030  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-sub 7709
This theorem is referenced by:  npncan3d  7883
  Copyright terms: Public domain W3C validator