ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  npncan3 GIF version

Theorem npncan3 7993
Description: Cancellation law for subtraction. (Contributed by Scott Fenton, 23-Jun-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
npncan3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) + (𝐶𝐴)) = (𝐶𝐵))

Proof of Theorem npncan3
StepHypRef Expression
1 simp1 981 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ)
2 subcl 7954 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐶𝐴) ∈ ℂ)
32ancoms 266 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶𝐴) ∈ ℂ)
433adant2 1000 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶𝐴) ∈ ℂ)
5 simp2 982 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ)
6 addsub 7966 . . 3 ((𝐴 ∈ ℂ ∧ (𝐶𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (𝐶𝐴)) − 𝐵) = ((𝐴𝐵) + (𝐶𝐴)))
71, 4, 5, 6syl3anc 1216 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + (𝐶𝐴)) − 𝐵) = ((𝐴𝐵) + (𝐶𝐴)))
8 pncan3 7963 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐶𝐴)) = 𝐶)
983adant2 1000 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐶𝐴)) = 𝐶)
109oveq1d 5782 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + (𝐶𝐴)) − 𝐵) = (𝐶𝐵))
117, 10eqtr3d 2172 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) + (𝐶𝐴)) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 962   = wceq 1331  wcel 1480  (class class class)co 5767  cc 7611   + caddc 7616  cmin 7926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-setind 4447  ax-resscn 7705  ax-1cn 7706  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-sub 7928
This theorem is referenced by:  npncan3d  8102
  Copyright terms: Public domain W3C validator