| Step | Hyp | Ref
| Expression |
| 1 | | addcl 8006 |
. . 3
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) |
| 2 | 1 | adantl 277 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ) |
| 3 | | simp2 1000 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ) |
| 4 | | mulcl 8008 |
. . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) |
| 5 | 4 | adantl 277 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ) |
| 6 | | ax-1cn 7974 |
. . . . . 6
⊢ 1 ∈
ℂ |
| 7 | 6 | negcli 8296 |
. . . . 5
⊢ -1 ∈
ℂ |
| 8 | 7 | fconst6 5458 |
. . . 4
⊢ (𝐴 × {-1}):𝐴⟶ℂ |
| 9 | 8 | a1i 9 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐴 × {-1}):𝐴⟶ℂ) |
| 10 | | simp3 1001 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺:𝐴⟶ℂ) |
| 11 | | simp1 999 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐴 ∈ 𝑉) |
| 12 | | inidm 3373 |
. . 3
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| 13 | 5, 9, 10, 11, 11, 12 | off 6149 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐴 × {-1}) ∘𝑓
· 𝐺):𝐴⟶ℂ) |
| 14 | | subcl 8227 |
. . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 − 𝑦) ∈ ℂ) |
| 15 | 14 | adantl 277 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 − 𝑦) ∈ ℂ) |
| 16 | 15, 3, 10, 11, 11, 12 | off 6149 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹 ∘𝑓 − 𝐺):𝐴⟶ℂ) |
| 17 | | eqidd 2197 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) |
| 18 | 7 | a1i 9 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → -1 ∈
ℂ) |
| 19 | 10 | ffnd 5409 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺 Fn 𝐴) |
| 20 | | eqidd 2197 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = (𝐺‘𝑥)) |
| 21 | 7 | a1i 9 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → -1 ∈ ℂ) |
| 22 | 10 | ffvelcdmda 5698 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ ℂ) |
| 23 | 21, 22 | mulcld 8049 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (-1 · (𝐺‘𝑥)) ∈ ℂ) |
| 24 | 11, 18, 19, 20, 23 | ofc1g 6157 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (((𝐴 × {-1}) ∘𝑓
· 𝐺)‘𝑥) = (-1 · (𝐺‘𝑥))) |
| 25 | 22 | mulm1d 8438 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (-1 · (𝐺‘𝑥)) = -(𝐺‘𝑥)) |
| 26 | 24, 25 | eqtrd 2229 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (((𝐴 × {-1}) ∘𝑓
· 𝐺)‘𝑥) = -(𝐺‘𝑥)) |
| 27 | 3 | ffvelcdmda 5698 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℂ) |
| 28 | 27, 22 | negsubd 8345 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) + -(𝐺‘𝑥)) = ((𝐹‘𝑥) − (𝐺‘𝑥))) |
| 29 | 3 | ffnd 5409 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹 Fn 𝐴) |
| 30 | 27, 22 | subcld 8339 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) − (𝐺‘𝑥)) ∈ ℂ) |
| 31 | 29, 19, 11, 11, 12, 17, 20, 30 | ofvalg 6146 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘𝑓 − 𝐺)‘𝑥) = ((𝐹‘𝑥) − (𝐺‘𝑥))) |
| 32 | 28, 31 | eqtr4d 2232 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) + -(𝐺‘𝑥)) = ((𝐹 ∘𝑓 − 𝐺)‘𝑥)) |
| 33 | 2, 3, 13, 11, 11, 12, 16, 17, 26, 32 | offeq 6150 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹 ∘𝑓 + ((𝐴 × {-1})
∘𝑓 · 𝐺)) = (𝐹 ∘𝑓 − 𝐺)) |