ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalgval GIF version

Theorem eucalgval 12021
Description: Euclid's Algorithm eucalg 12026 computes the greatest common divisor of two nonnegative integers by repeatedly replacing the larger of them with its remainder modulo the smaller until the remainder is 0.

The value of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)

Hypothesis
Ref Expression
eucalgval.1 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
Assertion
Ref Expression
eucalgval (𝑋 ∈ (ℕ0 × ℕ0) → (𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩))
Distinct variable group:   𝑥,𝑦,𝑋
Allowed substitution hints:   𝐸(𝑥,𝑦)

Proof of Theorem eucalgval
StepHypRef Expression
1 df-ov 5868 . . 3 ((1st𝑋)𝐸(2nd𝑋)) = (𝐸‘⟨(1st𝑋), (2nd𝑋)⟩)
2 xp1st 6156 . . . 4 (𝑋 ∈ (ℕ0 × ℕ0) → (1st𝑋) ∈ ℕ0)
3 xp2nd 6157 . . . 4 (𝑋 ∈ (ℕ0 × ℕ0) → (2nd𝑋) ∈ ℕ0)
4 eucalgval.1 . . . . 5 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
54eucalgval2 12020 . . . 4 (((1st𝑋) ∈ ℕ0 ∧ (2nd𝑋) ∈ ℕ0) → ((1st𝑋)𝐸(2nd𝑋)) = if((2nd𝑋) = 0, ⟨(1st𝑋), (2nd𝑋)⟩, ⟨(2nd𝑋), ((1st𝑋) mod (2nd𝑋))⟩))
62, 3, 5syl2anc 411 . . 3 (𝑋 ∈ (ℕ0 × ℕ0) → ((1st𝑋)𝐸(2nd𝑋)) = if((2nd𝑋) = 0, ⟨(1st𝑋), (2nd𝑋)⟩, ⟨(2nd𝑋), ((1st𝑋) mod (2nd𝑋))⟩))
71, 6eqtr3id 2222 . 2 (𝑋 ∈ (ℕ0 × ℕ0) → (𝐸‘⟨(1st𝑋), (2nd𝑋)⟩) = if((2nd𝑋) = 0, ⟨(1st𝑋), (2nd𝑋)⟩, ⟨(2nd𝑋), ((1st𝑋) mod (2nd𝑋))⟩))
8 1st2nd2 6166 . . 3 (𝑋 ∈ (ℕ0 × ℕ0) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
98fveq2d 5511 . 2 (𝑋 ∈ (ℕ0 × ℕ0) → (𝐸𝑋) = (𝐸‘⟨(1st𝑋), (2nd𝑋)⟩))
108fveq2d 5511 . . . . 5 (𝑋 ∈ (ℕ0 × ℕ0) → ( mod ‘𝑋) = ( mod ‘⟨(1st𝑋), (2nd𝑋)⟩))
11 df-ov 5868 . . . . 5 ((1st𝑋) mod (2nd𝑋)) = ( mod ‘⟨(1st𝑋), (2nd𝑋)⟩)
1210, 11eqtr4di 2226 . . . 4 (𝑋 ∈ (ℕ0 × ℕ0) → ( mod ‘𝑋) = ((1st𝑋) mod (2nd𝑋)))
1312opeq2d 3781 . . 3 (𝑋 ∈ (ℕ0 × ℕ0) → ⟨(2nd𝑋), ( mod ‘𝑋)⟩ = ⟨(2nd𝑋), ((1st𝑋) mod (2nd𝑋))⟩)
148, 13ifeq12d 3551 . 2 (𝑋 ∈ (ℕ0 × ℕ0) → if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) = if((2nd𝑋) = 0, ⟨(1st𝑋), (2nd𝑋)⟩, ⟨(2nd𝑋), ((1st𝑋) mod (2nd𝑋))⟩))
157, 9, 143eqtr4d 2218 1 (𝑋 ∈ (ℕ0 × ℕ0) → (𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2146  ifcif 3532  cop 3592   × cxp 4618  cfv 5208  (class class class)co 5865  cmpo 5867  1st c1st 6129  2nd c2nd 6130  0cc0 7786  0cn0 9149   mod cmo 10292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-po 4290  df-iso 4291  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8603  df-inn 8893  df-n0 9150  df-z 9227  df-q 9593  df-rp 9625  df-fl 10240  df-mod 10293
This theorem is referenced by:  eucalginv  12023  eucalglt  12024
  Copyright terms: Public domain W3C validator