ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressex GIF version

Theorem ressex 12768
Description: Existence of structure restriction. (Contributed by Jim Kingdon, 16-Jan-2025.)
Assertion
Ref Expression
ressex ((𝑊𝑋𝐴𝑌) → (𝑊s 𝐴) ∈ V)

Proof of Theorem ressex
StepHypRef Expression
1 ressvalsets 12767 . 2 ((𝑊𝑋𝐴𝑌) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
2 simpl 109 . . 3 ((𝑊𝑋𝐴𝑌) → 𝑊𝑋)
3 basendxnn 12759 . . . 4 (Base‘ndx) ∈ ℕ
43a1i 9 . . 3 ((𝑊𝑋𝐴𝑌) → (Base‘ndx) ∈ ℕ)
5 inex1g 4170 . . . 4 (𝐴𝑌 → (𝐴 ∩ (Base‘𝑊)) ∈ V)
65adantl 277 . . 3 ((𝑊𝑋𝐴𝑌) → (𝐴 ∩ (Base‘𝑊)) ∈ V)
7 setsex 12735 . . 3 ((𝑊𝑋 ∧ (Base‘ndx) ∈ ℕ ∧ (𝐴 ∩ (Base‘𝑊)) ∈ V) → (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) ∈ V)
82, 4, 6, 7syl3anc 1249 . 2 ((𝑊𝑋𝐴𝑌) → (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) ∈ V)
91, 8eqeltrd 2273 1 ((𝑊𝑋𝐴𝑌) → (𝑊s 𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167  Vcvv 2763  cin 3156  cop 3626  cfv 5259  (class class class)co 5925  cn 9007  ndxcnx 12700   sSet csts 12701  Basecbs 12703  s cress 12704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-inn 9008  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711
This theorem is referenced by:  ressressg  12778  mgpress  13563  rdivmuldivd  13776  invrpropdg  13781  sraval  14069  sralemg  14070  srascag  14074  sravscag  14075  sraipg  14076  sraex  14078  rnglidlmmgm  14128  rnglidlmsgrp  14129
  Copyright terms: Public domain W3C validator