| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressex | GIF version | ||
| Description: Existence of structure restriction. (Contributed by Jim Kingdon, 16-Jan-2025.) |
| Ref | Expression |
|---|---|
| ressex | ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝑊 ↾s 𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressvalsets 13011 | . 2 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) | |
| 2 | simpl 109 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑊 ∈ 𝑋) | |
| 3 | basendxnn 13003 | . . . 4 ⊢ (Base‘ndx) ∈ ℕ | |
| 4 | 3 | a1i 9 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (Base‘ndx) ∈ ℕ) |
| 5 | inex1g 4196 | . . . 4 ⊢ (𝐴 ∈ 𝑌 → (𝐴 ∩ (Base‘𝑊)) ∈ V) | |
| 6 | 5 | adantl 277 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝐴 ∩ (Base‘𝑊)) ∈ V) |
| 7 | setsex 12979 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ (Base‘ndx) ∈ ℕ ∧ (𝐴 ∩ (Base‘𝑊)) ∈ V) → (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉) ∈ V) | |
| 8 | 2, 4, 6, 7 | syl3anc 1250 | . 2 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉) ∈ V) |
| 9 | 1, 8 | eqeltrd 2284 | 1 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝑊 ↾s 𝐴) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2178 Vcvv 2776 ∩ cin 3173 〈cop 3646 ‘cfv 5290 (class class class)co 5967 ℕcn 9071 ndxcnx 12944 sSet csts 12945 Basecbs 12947 ↾s cress 12948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-inn 9072 df-ndx 12950 df-slot 12951 df-base 12953 df-sets 12954 df-iress 12955 |
| This theorem is referenced by: ressressg 13022 mgpress 13808 rdivmuldivd 14021 invrpropdg 14026 sraval 14314 sralemg 14315 srascag 14319 sravscag 14320 sraipg 14321 sraex 14323 rnglidlmmgm 14373 rnglidlmsgrp 14374 mplvalcoe 14567 fnmpl 14570 |
| Copyright terms: Public domain | W3C validator |