ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfri2 GIF version

Theorem tfri2 6421
Description: Principle of Transfinite Recursion, part 2 of 3. Theorem 7.41(2) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule 𝐺 ( as described at tfri1 6420). Here we show that the function 𝐹 has the property that for any function 𝐺 satisfying that condition, the "next" value of 𝐹 is 𝐺 recursively applied to all "previous" values of 𝐹. (Contributed by Jim Kingdon, 4-May-2019.)
Hypotheses
Ref Expression
tfri1.1 𝐹 = recs(𝐺)
tfri1.2 (Fun 𝐺 ∧ (𝐺𝑥) ∈ V)
Assertion
Ref Expression
tfri2 (𝐴 ∈ On → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))
Distinct variable group:   𝑥,𝐺
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem tfri2
StepHypRef Expression
1 tfri1.1 . . . . 5 𝐹 = recs(𝐺)
2 tfri1.2 . . . . 5 (Fun 𝐺 ∧ (𝐺𝑥) ∈ V)
31, 2tfri1 6420 . . . 4 𝐹 Fn On
4 fndm 5354 . . . 4 (𝐹 Fn On → dom 𝐹 = On)
53, 4ax-mp 5 . . 3 dom 𝐹 = On
65eleq2i 2260 . 2 (𝐴 ∈ dom 𝐹𝐴 ∈ On)
71tfr2a 6376 . 2 (𝐴 ∈ dom 𝐹 → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))
86, 7sylbir 135 1 (𝐴 ∈ On → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  Oncon0 4395  dom cdm 4660  cres 4662  Fun wfun 5249   Fn wfn 5250  cfv 5255  recscrecs 6359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6360
This theorem is referenced by:  tfri3  6422
  Copyright terms: Public domain W3C validator