![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tfri2 | GIF version |
Description: Principle of Transfinite Recursion, part 2 of 3. Theorem 7.41(2) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule 𝐺 ( as described at tfri1 6168). Here we show that the function 𝐹 has the property that for any function 𝐺 satisfying that condition, the "next" value of 𝐹 is 𝐺 recursively applied to all "previous" values of 𝐹. (Contributed by Jim Kingdon, 4-May-2019.) |
Ref | Expression |
---|---|
tfri1.1 | ⊢ 𝐹 = recs(𝐺) |
tfri1.2 | ⊢ (Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V) |
Ref | Expression |
---|---|
tfri2 | ⊢ (𝐴 ∈ On → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfri1.1 | . . . . 5 ⊢ 𝐹 = recs(𝐺) | |
2 | tfri1.2 | . . . . 5 ⊢ (Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V) | |
3 | 1, 2 | tfri1 6168 | . . . 4 ⊢ 𝐹 Fn On |
4 | fndm 5147 | . . . 4 ⊢ (𝐹 Fn On → dom 𝐹 = On) | |
5 | 3, 4 | ax-mp 7 | . . 3 ⊢ dom 𝐹 = On |
6 | 5 | eleq2i 2161 | . 2 ⊢ (𝐴 ∈ dom 𝐹 ↔ 𝐴 ∈ On) |
7 | 1 | tfr2a 6124 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) |
8 | 6, 7 | sylbir 134 | 1 ⊢ (𝐴 ∈ On → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1296 ∈ wcel 1445 Vcvv 2633 Oncon0 4214 dom cdm 4467 ↾ cres 4469 Fun wfun 5043 Fn wfn 5044 ‘cfv 5049 recscrecs 6107 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-coll 3975 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-csb 2948 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-iun 3754 df-br 3868 df-opab 3922 df-mpt 3923 df-tr 3959 df-id 4144 df-iord 4217 df-on 4219 df-suc 4222 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-f1 5054 df-fo 5055 df-f1o 5056 df-fv 5057 df-recs 6108 |
This theorem is referenced by: tfri3 6170 |
Copyright terms: Public domain | W3C validator |