| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfri2 | GIF version | ||
| Description: Principle of Transfinite Recursion, part 2 of 3. Theorem 7.41(2) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule 𝐺 ( as described at tfri1 6501). Here we show that the function 𝐹 has the property that for any function 𝐺 satisfying that condition, the "next" value of 𝐹 is 𝐺 recursively applied to all "previous" values of 𝐹. (Contributed by Jim Kingdon, 4-May-2019.) |
| Ref | Expression |
|---|---|
| tfri1.1 | ⊢ 𝐹 = recs(𝐺) |
| tfri1.2 | ⊢ (Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V) |
| Ref | Expression |
|---|---|
| tfri2 | ⊢ (𝐴 ∈ On → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfri1.1 | . . . . 5 ⊢ 𝐹 = recs(𝐺) | |
| 2 | tfri1.2 | . . . . 5 ⊢ (Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V) | |
| 3 | 1, 2 | tfri1 6501 | . . . 4 ⊢ 𝐹 Fn On |
| 4 | fndm 5416 | . . . 4 ⊢ (𝐹 Fn On → dom 𝐹 = On) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ dom 𝐹 = On |
| 6 | 5 | eleq2i 2296 | . 2 ⊢ (𝐴 ∈ dom 𝐹 ↔ 𝐴 ∈ On) |
| 7 | 1 | tfr2a 6457 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) |
| 8 | 6, 7 | sylbir 135 | 1 ⊢ (𝐴 ∈ On → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 Oncon0 4451 dom cdm 4716 ↾ cres 4718 Fun wfun 5308 Fn wfn 5309 ‘cfv 5314 recscrecs 6440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-suc 4459 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-recs 6441 |
| This theorem is referenced by: tfri3 6503 |
| Copyright terms: Public domain | W3C validator |