Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfri2 GIF version

Theorem tfri2 6263
 Description: Principle of Transfinite Recursion, part 2 of 3. Theorem 7.41(2) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule 𝐺 ( as described at tfri1 6262). Here we show that the function 𝐹 has the property that for any function 𝐺 satisfying that condition, the "next" value of 𝐹 is 𝐺 recursively applied to all "previous" values of 𝐹. (Contributed by Jim Kingdon, 4-May-2019.)
Hypotheses
Ref Expression
tfri1.1 𝐹 = recs(𝐺)
tfri1.2 (Fun 𝐺 ∧ (𝐺𝑥) ∈ V)
Assertion
Ref Expression
tfri2 (𝐴 ∈ On → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))
Distinct variable group:   𝑥,𝐺
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem tfri2
StepHypRef Expression
1 tfri1.1 . . . . 5 𝐹 = recs(𝐺)
2 tfri1.2 . . . . 5 (Fun 𝐺 ∧ (𝐺𝑥) ∈ V)
31, 2tfri1 6262 . . . 4 𝐹 Fn On
4 fndm 5222 . . . 4 (𝐹 Fn On → dom 𝐹 = On)
53, 4ax-mp 5 . . 3 dom 𝐹 = On
65eleq2i 2206 . 2 (𝐴 ∈ dom 𝐹𝐴 ∈ On)
71tfr2a 6218 . 2 (𝐴 ∈ dom 𝐹 → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))
86, 7sylbir 134 1 (𝐴 ∈ On → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1331   ∈ wcel 1480  Vcvv 2686  Oncon0 4285  dom cdm 4539   ↾ cres 4541  Fun wfun 5117   Fn wfn 5118  ‘cfv 5123  recscrecs 6201 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-recs 6202 This theorem is referenced by:  tfri3  6264
 Copyright terms: Public domain W3C validator