| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfri2 | GIF version | ||
| Description: Principle of Transfinite Recursion, part 2 of 3. Theorem 7.41(2) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule 𝐺 ( as described at tfri1 6461). Here we show that the function 𝐹 has the property that for any function 𝐺 satisfying that condition, the "next" value of 𝐹 is 𝐺 recursively applied to all "previous" values of 𝐹. (Contributed by Jim Kingdon, 4-May-2019.) |
| Ref | Expression |
|---|---|
| tfri1.1 | ⊢ 𝐹 = recs(𝐺) |
| tfri1.2 | ⊢ (Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V) |
| Ref | Expression |
|---|---|
| tfri2 | ⊢ (𝐴 ∈ On → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfri1.1 | . . . . 5 ⊢ 𝐹 = recs(𝐺) | |
| 2 | tfri1.2 | . . . . 5 ⊢ (Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V) | |
| 3 | 1, 2 | tfri1 6461 | . . . 4 ⊢ 𝐹 Fn On |
| 4 | fndm 5379 | . . . 4 ⊢ (𝐹 Fn On → dom 𝐹 = On) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ dom 𝐹 = On |
| 6 | 5 | eleq2i 2273 | . 2 ⊢ (𝐴 ∈ dom 𝐹 ↔ 𝐴 ∈ On) |
| 7 | 1 | tfr2a 6417 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) |
| 8 | 6, 7 | sylbir 135 | 1 ⊢ (𝐴 ∈ On → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 Vcvv 2773 Oncon0 4415 dom cdm 4680 ↾ cres 4682 Fun wfun 5271 Fn wfn 5272 ‘cfv 5277 recscrecs 6400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-iord 4418 df-on 4420 df-suc 4423 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-recs 6401 |
| This theorem is referenced by: tfri3 6463 |
| Copyright terms: Public domain | W3C validator |