| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfri2 | GIF version | ||
| Description: Principle of Transfinite Recursion, part 2 of 3. Theorem 7.41(2) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule 𝐺 ( as described at tfri1 6432). Here we show that the function 𝐹 has the property that for any function 𝐺 satisfying that condition, the "next" value of 𝐹 is 𝐺 recursively applied to all "previous" values of 𝐹. (Contributed by Jim Kingdon, 4-May-2019.) |
| Ref | Expression |
|---|---|
| tfri1.1 | ⊢ 𝐹 = recs(𝐺) |
| tfri1.2 | ⊢ (Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V) |
| Ref | Expression |
|---|---|
| tfri2 | ⊢ (𝐴 ∈ On → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfri1.1 | . . . . 5 ⊢ 𝐹 = recs(𝐺) | |
| 2 | tfri1.2 | . . . . 5 ⊢ (Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V) | |
| 3 | 1, 2 | tfri1 6432 | . . . 4 ⊢ 𝐹 Fn On |
| 4 | fndm 5358 | . . . 4 ⊢ (𝐹 Fn On → dom 𝐹 = On) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ dom 𝐹 = On |
| 6 | 5 | eleq2i 2263 | . 2 ⊢ (𝐴 ∈ dom 𝐹 ↔ 𝐴 ∈ On) |
| 7 | 1 | tfr2a 6388 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) |
| 8 | 6, 7 | sylbir 135 | 1 ⊢ (𝐴 ∈ On → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 Oncon0 4399 dom cdm 4664 ↾ cres 4666 Fun wfun 5253 Fn wfn 5254 ‘cfv 5259 recscrecs 6371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-recs 6372 |
| This theorem is referenced by: tfri3 6434 |
| Copyright terms: Public domain | W3C validator |