ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt21f GIF version

Theorem cnmpt21f 14612
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt21.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt21.a (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
cnmpt21f.f (𝜑𝐹 ∈ (𝐿 Cn 𝑀))
Assertion
Ref Expression
cnmpt21f (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐹𝐴)) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑀,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem cnmpt21f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cnmpt21.j . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 cnmpt21.k . 2 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 cnmpt21.a . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
4 cnmpt21f.f . . . 4 (𝜑𝐹 ∈ (𝐿 Cn 𝑀))
5 cntop1 14521 . . . 4 (𝐹 ∈ (𝐿 Cn 𝑀) → 𝐿 ∈ Top)
64, 5syl 14 . . 3 (𝜑𝐿 ∈ Top)
7 toptopon2 14339 . . 3 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
86, 7sylib 122 . 2 (𝜑𝐿 ∈ (TopOn‘ 𝐿))
9 eqid 2196 . . . . . 6 𝐿 = 𝐿
10 eqid 2196 . . . . . 6 𝑀 = 𝑀
119, 10cnf 14524 . . . . 5 (𝐹 ∈ (𝐿 Cn 𝑀) → 𝐹: 𝐿 𝑀)
124, 11syl 14 . . . 4 (𝜑𝐹: 𝐿 𝑀)
1312feqmptd 5617 . . 3 (𝜑𝐹 = (𝑧 𝐿 ↦ (𝐹𝑧)))
1413, 4eqeltrrd 2274 . 2 (𝜑 → (𝑧 𝐿 ↦ (𝐹𝑧)) ∈ (𝐿 Cn 𝑀))
15 fveq2 5561 . 2 (𝑧 = 𝐴 → (𝐹𝑧) = (𝐹𝐴))
161, 2, 3, 8, 14, 15cnmpt21 14611 1 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐹𝐴)) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167   cuni 3840  cmpt 4095  wf 5255  cfv 5259  (class class class)co 5925  cmpo 5927  Topctop 14317  TopOnctopon 14330   Cn ccn 14505   ×t ctx 14572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-topgen 12962  df-top 14318  df-topon 14331  df-bases 14363  df-cn 14508  df-tx 14573
This theorem is referenced by:  cnmpt22  14614  txhmeo  14639
  Copyright terms: Public domain W3C validator