| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnmpt21f | GIF version | ||
| Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmpt21.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| cnmpt21.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| cnmpt21.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
| cnmpt21f.f | ⊢ (𝜑 → 𝐹 ∈ (𝐿 Cn 𝑀)) |
| Ref | Expression |
|---|---|
| cnmpt21f | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐹‘𝐴)) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt21.j | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 2 | cnmpt21.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
| 3 | cnmpt21.a | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) | |
| 4 | cnmpt21f.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐿 Cn 𝑀)) | |
| 5 | cntop1 14758 | . . . 4 ⊢ (𝐹 ∈ (𝐿 Cn 𝑀) → 𝐿 ∈ Top) | |
| 6 | 4, 5 | syl 14 | . . 3 ⊢ (𝜑 → 𝐿 ∈ Top) |
| 7 | toptopon2 14576 | . . 3 ⊢ (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘∪ 𝐿)) | |
| 8 | 6, 7 | sylib 122 | . 2 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘∪ 𝐿)) |
| 9 | eqid 2206 | . . . . . 6 ⊢ ∪ 𝐿 = ∪ 𝐿 | |
| 10 | eqid 2206 | . . . . . 6 ⊢ ∪ 𝑀 = ∪ 𝑀 | |
| 11 | 9, 10 | cnf 14761 | . . . . 5 ⊢ (𝐹 ∈ (𝐿 Cn 𝑀) → 𝐹:∪ 𝐿⟶∪ 𝑀) |
| 12 | 4, 11 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐹:∪ 𝐿⟶∪ 𝑀) |
| 13 | 12 | feqmptd 5650 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ∪ 𝐿 ↦ (𝐹‘𝑧))) |
| 14 | 13, 4 | eqeltrrd 2284 | . 2 ⊢ (𝜑 → (𝑧 ∈ ∪ 𝐿 ↦ (𝐹‘𝑧)) ∈ (𝐿 Cn 𝑀)) |
| 15 | fveq2 5594 | . 2 ⊢ (𝑧 = 𝐴 → (𝐹‘𝑧) = (𝐹‘𝐴)) | |
| 16 | 1, 2, 3, 8, 14, 15 | cnmpt21 14848 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐹‘𝐴)) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ∪ cuni 3859 ↦ cmpt 4116 ⟶wf 5281 ‘cfv 5285 (class class class)co 5962 ∈ cmpo 5964 Topctop 14554 TopOnctopon 14567 Cn ccn 14742 ×t ctx 14809 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-map 6755 df-topgen 13177 df-top 14555 df-topon 14568 df-bases 14600 df-cn 14745 df-tx 14810 |
| This theorem is referenced by: cnmpt22 14851 txhmeo 14876 |
| Copyright terms: Public domain | W3C validator |