![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnmpt21f | GIF version |
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmpt21.j | β’ (π β π½ β (TopOnβπ)) |
cnmpt21.k | β’ (π β πΎ β (TopOnβπ)) |
cnmpt21.a | β’ (π β (π₯ β π, π¦ β π β¦ π΄) β ((π½ Γt πΎ) Cn πΏ)) |
cnmpt21f.f | β’ (π β πΉ β (πΏ Cn π)) |
Ref | Expression |
---|---|
cnmpt21f | β’ (π β (π₯ β π, π¦ β π β¦ (πΉβπ΄)) β ((π½ Γt πΎ) Cn π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmpt21.j | . 2 β’ (π β π½ β (TopOnβπ)) | |
2 | cnmpt21.k | . 2 β’ (π β πΎ β (TopOnβπ)) | |
3 | cnmpt21.a | . 2 β’ (π β (π₯ β π, π¦ β π β¦ π΄) β ((π½ Γt πΎ) Cn πΏ)) | |
4 | cnmpt21f.f | . . . 4 β’ (π β πΉ β (πΏ Cn π)) | |
5 | cntop1 13786 | . . . 4 β’ (πΉ β (πΏ Cn π) β πΏ β Top) | |
6 | 4, 5 | syl 14 | . . 3 β’ (π β πΏ β Top) |
7 | toptopon2 13604 | . . 3 β’ (πΏ β Top β πΏ β (TopOnββͺ πΏ)) | |
8 | 6, 7 | sylib 122 | . 2 β’ (π β πΏ β (TopOnββͺ πΏ)) |
9 | eqid 2177 | . . . . . 6 β’ βͺ πΏ = βͺ πΏ | |
10 | eqid 2177 | . . . . . 6 β’ βͺ π = βͺ π | |
11 | 9, 10 | cnf 13789 | . . . . 5 β’ (πΉ β (πΏ Cn π) β πΉ:βͺ πΏβΆβͺ π) |
12 | 4, 11 | syl 14 | . . . 4 β’ (π β πΉ:βͺ πΏβΆβͺ π) |
13 | 12 | feqmptd 5571 | . . 3 β’ (π β πΉ = (π§ β βͺ πΏ β¦ (πΉβπ§))) |
14 | 13, 4 | eqeltrrd 2255 | . 2 β’ (π β (π§ β βͺ πΏ β¦ (πΉβπ§)) β (πΏ Cn π)) |
15 | fveq2 5517 | . 2 β’ (π§ = π΄ β (πΉβπ§) = (πΉβπ΄)) | |
16 | 1, 2, 3, 8, 14, 15 | cnmpt21 13876 | 1 β’ (π β (π₯ β π, π¦ β π β¦ (πΉβπ΄)) β ((π½ Γt πΎ) Cn π)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β wcel 2148 βͺ cuni 3811 β¦ cmpt 4066 βΆwf 5214 βcfv 5218 (class class class)co 5877 β cmpo 5879 Topctop 13582 TopOnctopon 13595 Cn ccn 13770 Γt ctx 13837 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-map 6652 df-topgen 12714 df-top 13583 df-topon 13596 df-bases 13628 df-cn 13773 df-tx 13838 |
This theorem is referenced by: cnmpt22 13879 txhmeo 13904 |
Copyright terms: Public domain | W3C validator |