ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt21f GIF version

Theorem cnmpt21f 12932
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt21.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt21.a (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
cnmpt21f.f (𝜑𝐹 ∈ (𝐿 Cn 𝑀))
Assertion
Ref Expression
cnmpt21f (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐹𝐴)) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑀,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem cnmpt21f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cnmpt21.j . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 cnmpt21.k . 2 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 cnmpt21.a . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
4 cnmpt21f.f . . . 4 (𝜑𝐹 ∈ (𝐿 Cn 𝑀))
5 cntop1 12841 . . . 4 (𝐹 ∈ (𝐿 Cn 𝑀) → 𝐿 ∈ Top)
64, 5syl 14 . . 3 (𝜑𝐿 ∈ Top)
7 toptopon2 12657 . . 3 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
86, 7sylib 121 . 2 (𝜑𝐿 ∈ (TopOn‘ 𝐿))
9 eqid 2165 . . . . . 6 𝐿 = 𝐿
10 eqid 2165 . . . . . 6 𝑀 = 𝑀
119, 10cnf 12844 . . . . 5 (𝐹 ∈ (𝐿 Cn 𝑀) → 𝐹: 𝐿 𝑀)
124, 11syl 14 . . . 4 (𝜑𝐹: 𝐿 𝑀)
1312feqmptd 5539 . . 3 (𝜑𝐹 = (𝑧 𝐿 ↦ (𝐹𝑧)))
1413, 4eqeltrrd 2244 . 2 (𝜑 → (𝑧 𝐿 ↦ (𝐹𝑧)) ∈ (𝐿 Cn 𝑀))
15 fveq2 5486 . 2 (𝑧 = 𝐴 → (𝐹𝑧) = (𝐹𝐴))
161, 2, 3, 8, 14, 15cnmpt21 12931 1 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐹𝐴)) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2136   cuni 3789  cmpt 4043  wf 5184  cfv 5188  (class class class)co 5842  cmpo 5844  Topctop 12635  TopOnctopon 12648   Cn ccn 12825   ×t ctx 12892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-topgen 12577  df-top 12636  df-topon 12649  df-bases 12681  df-cn 12828  df-tx 12893
This theorem is referenced by:  cnmpt22  12934  txhmeo  12959
  Copyright terms: Public domain W3C validator