| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0cld | Structured version Visualization version GIF version | ||
| Description: The empty set is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 4-Oct-2006.) |
| Ref | Expression |
|---|---|
| 0cld | ⊢ (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dif0 4341 | . . 3 ⊢ (∪ 𝐽 ∖ ∅) = ∪ 𝐽 | |
| 2 | 1 | topopn 22793 | . 2 ⊢ (𝐽 ∈ Top → (∪ 𝐽 ∖ ∅) ∈ 𝐽) |
| 3 | 0ss 4363 | . . 3 ⊢ ∅ ⊆ ∪ 𝐽 | |
| 4 | eqid 2729 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 5 | 4 | iscld2 22915 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∅ ⊆ ∪ 𝐽) → (∅ ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ ∅) ∈ 𝐽)) |
| 6 | 3, 5 | mpan2 691 | . 2 ⊢ (𝐽 ∈ Top → (∅ ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ ∅) ∈ 𝐽)) |
| 7 | 2, 6 | mpbird 257 | 1 ⊢ (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∖ cdif 3911 ⊆ wss 3914 ∅c0 4296 ∪ cuni 4871 ‘cfv 6511 Topctop 22780 Clsdccld 22903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-top 22781 df-cld 22906 |
| This theorem is referenced by: cls0 22967 indiscld 22978 iscldtop 22982 iccordt 23101 isconn2 23301 tgptsmscld 24038 mblfinlem2 37652 mblfinlem3 37653 ismblfin 37655 |
| Copyright terms: Public domain | W3C validator |