Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0cld | Structured version Visualization version GIF version |
Description: The empty set is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 4-Oct-2006.) |
Ref | Expression |
---|---|
0cld | ⊢ (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dif0 4319 | . . 3 ⊢ (∪ 𝐽 ∖ ∅) = ∪ 𝐽 | |
2 | 1 | topopn 22161 | . 2 ⊢ (𝐽 ∈ Top → (∪ 𝐽 ∖ ∅) ∈ 𝐽) |
3 | 0ss 4343 | . . 3 ⊢ ∅ ⊆ ∪ 𝐽 | |
4 | eqid 2736 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
5 | 4 | iscld2 22285 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∅ ⊆ ∪ 𝐽) → (∅ ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ ∅) ∈ 𝐽)) |
6 | 3, 5 | mpan2 688 | . 2 ⊢ (𝐽 ∈ Top → (∅ ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ ∅) ∈ 𝐽)) |
7 | 2, 6 | mpbird 256 | 1 ⊢ (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2105 ∖ cdif 3895 ⊆ wss 3898 ∅c0 4269 ∪ cuni 4852 ‘cfv 6479 Topctop 22148 Clsdccld 22273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-iota 6431 df-fun 6481 df-fv 6487 df-top 22149 df-cld 22276 |
This theorem is referenced by: cls0 22337 indiscld 22348 iscldtop 22352 iccordt 22471 isconn2 22671 tgptsmscld 23408 mblfinlem2 35928 mblfinlem3 35929 ismblfin 35931 |
Copyright terms: Public domain | W3C validator |