MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0cld Structured version   Visualization version   GIF version

Theorem 0cld 21220
Description: The empty set is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 4-Oct-2006.)
Assertion
Ref Expression
0cld (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽))

Proof of Theorem 0cld
StepHypRef Expression
1 dif0 4182 . . 3 ( 𝐽 ∖ ∅) = 𝐽
21topopn 21088 . 2 (𝐽 ∈ Top → ( 𝐽 ∖ ∅) ∈ 𝐽)
3 0ss 4199 . . 3 ∅ ⊆ 𝐽
4 eqid 2825 . . . 4 𝐽 = 𝐽
54iscld2 21210 . . 3 ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → (∅ ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ ∅) ∈ 𝐽))
63, 5mpan2 682 . 2 (𝐽 ∈ Top → (∅ ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ ∅) ∈ 𝐽))
72, 6mpbird 249 1 (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wcel 2164  cdif 3795  wss 3798  c0 4146   cuni 4660  cfv 6127  Topctop 21075  Clsdccld 21198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-iota 6090  df-fun 6129  df-fv 6135  df-top 21076  df-cld 21201
This theorem is referenced by:  cls0  21262  indiscld  21273  iscldtop  21277  iccordt  21396  isconn2  21595  tgptsmscld  22331  mblfinlem2  33990  mblfinlem3  33991  ismblfin  33993
  Copyright terms: Public domain W3C validator