MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0cld Structured version   Visualization version   GIF version

Theorem 0cld 21621
Description: The empty set is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 4-Oct-2006.)
Assertion
Ref Expression
0cld (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽))

Proof of Theorem 0cld
StepHypRef Expression
1 dif0 4305 . . 3 ( 𝐽 ∖ ∅) = 𝐽
21topopn 21489 . 2 (𝐽 ∈ Top → ( 𝐽 ∖ ∅) ∈ 𝐽)
3 0ss 4323 . . 3 ∅ ⊆ 𝐽
4 eqid 2821 . . . 4 𝐽 = 𝐽
54iscld2 21611 . . 3 ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → (∅ ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ ∅) ∈ 𝐽))
63, 5mpan2 690 . 2 (𝐽 ∈ Top → (∅ ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ ∅) ∈ 𝐽))
72, 6mpbird 260 1 (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wcel 2115  cdif 3907  wss 3910  c0 4266   cuni 4811  cfv 6328  Topctop 21476  Clsdccld 21599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-sbc 3750  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-iota 6287  df-fun 6330  df-fv 6336  df-top 21477  df-cld 21602
This theorem is referenced by:  cls0  21663  indiscld  21674  iscldtop  21678  iccordt  21797  isconn2  21997  tgptsmscld  22734  mblfinlem2  34973  mblfinlem3  34974  ismblfin  34976
  Copyright terms: Public domain W3C validator