MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0cld Structured version   Visualization version   GIF version

Theorem 0cld 22981
Description: The empty set is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 4-Oct-2006.)
Assertion
Ref Expression
0cld (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽))

Proof of Theorem 0cld
StepHypRef Expression
1 dif0 4358 . . 3 ( 𝐽 ∖ ∅) = 𝐽
21topopn 22849 . 2 (𝐽 ∈ Top → ( 𝐽 ∖ ∅) ∈ 𝐽)
3 0ss 4380 . . 3 ∅ ⊆ 𝐽
4 eqid 2736 . . . 4 𝐽 = 𝐽
54iscld2 22971 . . 3 ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → (∅ ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ ∅) ∈ 𝐽))
63, 5mpan2 691 . 2 (𝐽 ∈ Top → (∅ ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ ∅) ∈ 𝐽))
72, 6mpbird 257 1 (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  cdif 3928  wss 3931  c0 4313   cuni 4888  cfv 6536  Topctop 22836  Clsdccld 22959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-top 22837  df-cld 22962
This theorem is referenced by:  cls0  23023  indiscld  23034  iscldtop  23038  iccordt  23157  isconn2  23357  tgptsmscld  24094  mblfinlem2  37687  mblfinlem3  37688  ismblfin  37690
  Copyright terms: Public domain W3C validator