![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0cld | Structured version Visualization version GIF version |
Description: The empty set is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 4-Oct-2006.) |
Ref | Expression |
---|---|
0cld | ⊢ (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dif0 4182 | . . 3 ⊢ (∪ 𝐽 ∖ ∅) = ∪ 𝐽 | |
2 | 1 | topopn 21088 | . 2 ⊢ (𝐽 ∈ Top → (∪ 𝐽 ∖ ∅) ∈ 𝐽) |
3 | 0ss 4199 | . . 3 ⊢ ∅ ⊆ ∪ 𝐽 | |
4 | eqid 2825 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
5 | 4 | iscld2 21210 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∅ ⊆ ∪ 𝐽) → (∅ ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ ∅) ∈ 𝐽)) |
6 | 3, 5 | mpan2 682 | . 2 ⊢ (𝐽 ∈ Top → (∅ ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ ∅) ∈ 𝐽)) |
7 | 2, 6 | mpbird 249 | 1 ⊢ (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∈ wcel 2164 ∖ cdif 3795 ⊆ wss 3798 ∅c0 4146 ∪ cuni 4660 ‘cfv 6127 Topctop 21075 Clsdccld 21198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-iota 6090 df-fun 6129 df-fv 6135 df-top 21076 df-cld 21201 |
This theorem is referenced by: cls0 21262 indiscld 21273 iscldtop 21277 iccordt 21396 isconn2 21595 tgptsmscld 22331 mblfinlem2 33990 mblfinlem3 33991 ismblfin 33993 |
Copyright terms: Public domain | W3C validator |