Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0cld | Structured version Visualization version GIF version |
Description: The empty set is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 4-Oct-2006.) |
Ref | Expression |
---|---|
0cld | ⊢ (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dif0 4303 | . . 3 ⊢ (∪ 𝐽 ∖ ∅) = ∪ 𝐽 | |
2 | 1 | topopn 21963 | . 2 ⊢ (𝐽 ∈ Top → (∪ 𝐽 ∖ ∅) ∈ 𝐽) |
3 | 0ss 4327 | . . 3 ⊢ ∅ ⊆ ∪ 𝐽 | |
4 | eqid 2738 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
5 | 4 | iscld2 22087 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∅ ⊆ ∪ 𝐽) → (∅ ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ ∅) ∈ 𝐽)) |
6 | 3, 5 | mpan2 687 | . 2 ⊢ (𝐽 ∈ Top → (∅ ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ ∅) ∈ 𝐽)) |
7 | 2, 6 | mpbird 256 | 1 ⊢ (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2108 ∖ cdif 3880 ⊆ wss 3883 ∅c0 4253 ∪ cuni 4836 ‘cfv 6418 Topctop 21950 Clsdccld 22075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-top 21951 df-cld 22078 |
This theorem is referenced by: cls0 22139 indiscld 22150 iscldtop 22154 iccordt 22273 isconn2 22473 tgptsmscld 23210 mblfinlem2 35742 mblfinlem3 35743 ismblfin 35745 |
Copyright terms: Public domain | W3C validator |