Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iscld2 | Structured version Visualization version GIF version |
Description: A subset of the underlying set of a topology is closed iff its complement is open. (Contributed by NM, 4-Oct-2006.) |
Ref | Expression |
---|---|
iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
iscld2 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ 𝑆) ∈ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | iscld 21778 | . 2 ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
3 | 2 | baibd 543 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ 𝑆) ∈ 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∖ cdif 3840 ⊆ wss 3843 ∪ cuni 4796 ‘cfv 6339 Topctop 21644 Clsdccld 21767 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-iota 6297 df-fun 6341 df-fv 6347 df-top 21645 df-cld 21770 |
This theorem is referenced by: isopn2 21783 0cld 21789 uncld 21792 isclo 21838 cnclima 22019 ist1-2 22098 hausdiag 22396 qtopcld 22464 ufildr 22682 blcld 23258 icccld 23519 iocmnfcld 23521 zcld 23565 recld2 23566 qtophaus 31358 kelac2 40462 stoweidlem50 43133 |
Copyright terms: Public domain | W3C validator |