MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscld2 Structured version   Visualization version   GIF version

Theorem iscld2 22976
Description: A subset of the underlying set of a topology is closed iff its complement is open. (Contributed by NM, 4-Oct-2006.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
iscld2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑋𝑆) ∈ 𝐽))

Proof of Theorem iscld2
StepHypRef Expression
1 iscld.1 . . 3 𝑋 = 𝐽
21iscld 22975 . 2 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
32baibd 538 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑋𝑆) ∈ 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  cdif 3941  wss 3944   cuni 4909  cfv 6549  Topctop 22839  Clsdccld 22964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6501  df-fun 6551  df-fv 6557  df-top 22840  df-cld 22967
This theorem is referenced by:  isopn2  22980  0cld  22986  uncld  22989  isclo  23035  cnclima  23216  ist1-2  23295  hausdiag  23593  qtopcld  23661  ufildr  23879  blcld  24458  icccld  24727  iocmnfcld  24729  zcld  24773  recld2  24774  qtophaus  33568  kelac2  42631  stoweidlem50  45576
  Copyright terms: Public domain W3C validator