MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abscxpbnd Structured version   Visualization version   GIF version

Theorem abscxpbnd 26811
Description: Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
abscxpbnd.1 (𝜑𝐴 ∈ ℂ)
abscxpbnd.2 (𝜑𝐵 ∈ ℂ)
abscxpbnd.3 (𝜑 → 0 ≤ (ℜ‘𝐵))
abscxpbnd.4 (𝜑𝑀 ∈ ℝ)
abscxpbnd.5 (𝜑 → (abs‘𝐴) ≤ 𝑀)
Assertion
Ref Expression
abscxpbnd (𝜑 → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))

Proof of Theorem abscxpbnd
StepHypRef Expression
1 1le1 11889 . . . . 5 1 ≤ 1
21a1i 11 . . . 4 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → 1 ≤ 1)
3 oveq12 7440 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴𝑐𝐵) = (0↑𝑐0))
43adantll 714 . . . . . . 7 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐𝐵) = (0↑𝑐0))
5 0cn 11251 . . . . . . . 8 0 ∈ ℂ
6 cxp0 26727 . . . . . . . 8 (0 ∈ ℂ → (0↑𝑐0) = 1)
75, 6ax-mp 5 . . . . . . 7 (0↑𝑐0) = 1
84, 7eqtrdi 2791 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐𝐵) = 1)
98fveq2d 6911 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (abs‘(𝐴𝑐𝐵)) = (abs‘1))
10 abs1 15333 . . . . 5 (abs‘1) = 1
119, 10eqtrdi 2791 . . . 4 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (abs‘(𝐴𝑐𝐵)) = 1)
12 fveq2 6907 . . . . . . . . 9 (𝐵 = 0 → (ℜ‘𝐵) = (ℜ‘0))
13 re0 15188 . . . . . . . . 9 (ℜ‘0) = 0
1412, 13eqtrdi 2791 . . . . . . . 8 (𝐵 = 0 → (ℜ‘𝐵) = 0)
1514oveq2d 7447 . . . . . . 7 (𝐵 = 0 → (𝑀𝑐(ℜ‘𝐵)) = (𝑀𝑐0))
16 abscxpbnd.4 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
1716recnd 11287 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
1817cxp0d 26762 . . . . . . . 8 (𝜑 → (𝑀𝑐0) = 1)
1918adantr 480 . . . . . . 7 ((𝜑𝐴 = 0) → (𝑀𝑐0) = 1)
2015, 19sylan9eqr 2797 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (𝑀𝑐(ℜ‘𝐵)) = 1)
21 simpr 484 . . . . . . . . . . 11 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → 𝐵 = 0)
2221abs00bd 15327 . . . . . . . . . 10 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (abs‘𝐵) = 0)
2322oveq1d 7446 . . . . . . . . 9 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → ((abs‘𝐵) · π) = (0 · π))
24 picn 26516 . . . . . . . . . 10 π ∈ ℂ
2524mul02i 11448 . . . . . . . . 9 (0 · π) = 0
2623, 25eqtrdi 2791 . . . . . . . 8 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → ((abs‘𝐵) · π) = 0)
2726fveq2d 6911 . . . . . . 7 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (exp‘((abs‘𝐵) · π)) = (exp‘0))
28 ef0 16124 . . . . . . 7 (exp‘0) = 1
2927, 28eqtrdi 2791 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (exp‘((abs‘𝐵) · π)) = 1)
3020, 29oveq12d 7449 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))) = (1 · 1))
31 1t1e1 12426 . . . . 5 (1 · 1) = 1
3230, 31eqtrdi 2791 . . . 4 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))) = 1)
332, 11, 323brtr4d 5180 . . 3 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
34 simplr 769 . . . . . . 7 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → 𝐴 = 0)
3534oveq1d 7446 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐𝐵) = (0↑𝑐𝐵))
36 abscxpbnd.2 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
3736adantr 480 . . . . . . 7 ((𝜑𝐴 = 0) → 𝐵 ∈ ℂ)
38 0cxp 26723 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (0↑𝑐𝐵) = 0)
3937, 38sylan 580 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (0↑𝑐𝐵) = 0)
4035, 39eqtrd 2775 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐𝐵) = 0)
4140abs00bd 15327 . . . 4 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (abs‘(𝐴𝑐𝐵)) = 0)
42 0red 11262 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
43 abscxpbnd.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
4443abscld 15472 . . . . . . . 8 (𝜑 → (abs‘𝐴) ∈ ℝ)
4543absge0d 15480 . . . . . . . 8 (𝜑 → 0 ≤ (abs‘𝐴))
46 abscxpbnd.5 . . . . . . . 8 (𝜑 → (abs‘𝐴) ≤ 𝑀)
4742, 44, 16, 45, 46letrd 11416 . . . . . . 7 (𝜑 → 0 ≤ 𝑀)
4836recld 15230 . . . . . . 7 (𝜑 → (ℜ‘𝐵) ∈ ℝ)
4916, 47, 48recxpcld 26780 . . . . . 6 (𝜑 → (𝑀𝑐(ℜ‘𝐵)) ∈ ℝ)
5049ad2antrr 726 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝑀𝑐(ℜ‘𝐵)) ∈ ℝ)
5136abscld 15472 . . . . . . . 8 (𝜑 → (abs‘𝐵) ∈ ℝ)
5251ad2antrr 726 . . . . . . 7 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (abs‘𝐵) ∈ ℝ)
53 pire 26515 . . . . . . 7 π ∈ ℝ
54 remulcl 11238 . . . . . . 7 (((abs‘𝐵) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘𝐵) · π) ∈ ℝ)
5552, 53, 54sylancl 586 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → ((abs‘𝐵) · π) ∈ ℝ)
5655reefcld 16121 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (exp‘((abs‘𝐵) · π)) ∈ ℝ)
5716, 47, 48cxpge0d 26781 . . . . . 6 (𝜑 → 0 ≤ (𝑀𝑐(ℜ‘𝐵)))
5857ad2antrr 726 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → 0 ≤ (𝑀𝑐(ℜ‘𝐵)))
5955rpefcld 16138 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (exp‘((abs‘𝐵) · π)) ∈ ℝ+)
6059rpge0d 13079 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → 0 ≤ (exp‘((abs‘𝐵) · π)))
6150, 56, 58, 60mulge0d 11838 . . . 4 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → 0 ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
6241, 61eqbrtrd 5170 . . 3 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
6333, 62pm2.61dane 3027 . 2 ((𝜑𝐴 = 0) → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
6443adantr 480 . . . . . 6 ((𝜑𝐴 ≠ 0) → 𝐴 ∈ ℂ)
65 simpr 484 . . . . . 6 ((𝜑𝐴 ≠ 0) → 𝐴 ≠ 0)
6636adantr 480 . . . . . 6 ((𝜑𝐴 ≠ 0) → 𝐵 ∈ ℂ)
6764, 65, 66cxpefd 26769 . . . . 5 ((𝜑𝐴 ≠ 0) → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
6867fveq2d 6911 . . . 4 ((𝜑𝐴 ≠ 0) → (abs‘(𝐴𝑐𝐵)) = (abs‘(exp‘(𝐵 · (log‘𝐴)))))
69 logcl 26625 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
7043, 69sylan 580 . . . . . 6 ((𝜑𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
7166, 70mulcld 11279 . . . . 5 ((𝜑𝐴 ≠ 0) → (𝐵 · (log‘𝐴)) ∈ ℂ)
72 absef 16230 . . . . 5 ((𝐵 · (log‘𝐴)) ∈ ℂ → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
7371, 72syl 17 . . . 4 ((𝜑𝐴 ≠ 0) → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
7466recld 15230 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (ℜ‘𝐵) ∈ ℝ)
7570recld 15230 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) ∈ ℝ)
7674, 75remulcld 11289 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℝ)
7776recnd 11287 . . . . . 6 ((𝜑𝐴 ≠ 0) → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℂ)
7866imcld 15231 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (ℑ‘𝐵) ∈ ℝ)
7970imcld 15231 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℝ)
8079renegcld 11688 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → -(ℑ‘(log‘𝐴)) ∈ ℝ)
8178, 80remulcld 11289 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℝ)
8281recnd 11287 . . . . . 6 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℂ)
83 efadd 16127 . . . . . 6 ((((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℂ ∧ ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℂ) → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
8477, 82, 83syl2anc 584 . . . . 5 ((𝜑𝐴 ≠ 0) → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
8578, 79remulcld 11289 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · (ℑ‘(log‘𝐴))) ∈ ℝ)
8685recnd 11287 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · (ℑ‘(log‘𝐴))) ∈ ℂ)
8777, 86negsubd 11624 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + -((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) − ((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
8878recnd 11287 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (ℑ‘𝐵) ∈ ℂ)
8979recnd 11287 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℂ)
9088, 89mulneg2d 11715 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) = -((ℑ‘𝐵) · (ℑ‘(log‘𝐴))))
9190oveq2d 7447 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + -((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
9266, 70remuld 15254 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (ℜ‘(𝐵 · (log‘𝐴))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) − ((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
9387, 91, 923eqtr4d 2785 . . . . . 6 ((𝜑𝐴 ≠ 0) → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = (ℜ‘(𝐵 · (log‘𝐴))))
9493fveq2d 6911 . . . . 5 ((𝜑𝐴 ≠ 0) → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
95 relog 26654 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) = (log‘(abs‘𝐴)))
9643, 95sylan 580 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) = (log‘(abs‘𝐴)))
9796oveq2d 7447 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) = ((ℜ‘𝐵) · (log‘(abs‘𝐴))))
9897fveq2d 6911 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) = (exp‘((ℜ‘𝐵) · (log‘(abs‘𝐴)))))
9944recnd 11287 . . . . . . . . 9 (𝜑 → (abs‘𝐴) ∈ ℂ)
10099adantr 480 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ)
10143abs00ad 15326 . . . . . . . . . 10 (𝜑 → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
102101necon3bid 2983 . . . . . . . . 9 (𝜑 → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
103102biimpar 477 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) ≠ 0)
10474recnd 11287 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (ℜ‘𝐵) ∈ ℂ)
105100, 103, 104cxpefd 26769 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) = (exp‘((ℜ‘𝐵) · (log‘(abs‘𝐴)))))
10698, 105eqtr4d 2778 . . . . . 6 ((𝜑𝐴 ≠ 0) → (exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) = ((abs‘𝐴)↑𝑐(ℜ‘𝐵)))
107106oveq1d 7446 . . . . 5 ((𝜑𝐴 ≠ 0) → ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
10884, 94, 1073eqtr3d 2783 . . . 4 ((𝜑𝐴 ≠ 0) → (exp‘(ℜ‘(𝐵 · (log‘𝐴)))) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
10968, 73, 1083eqtrd 2779 . . 3 ((𝜑𝐴 ≠ 0) → (abs‘(𝐴𝑐𝐵)) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
11064abscld 15472 . . . . . 6 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
11164absge0d 15480 . . . . . 6 ((𝜑𝐴 ≠ 0) → 0 ≤ (abs‘𝐴))
112110, 111, 74recxpcld 26780 . . . . 5 ((𝜑𝐴 ≠ 0) → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ∈ ℝ)
11381reefcld 16121 . . . . 5 ((𝜑𝐴 ≠ 0) → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ∈ ℝ)
114112, 113remulcld 11289 . . . 4 ((𝜑𝐴 ≠ 0) → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ∈ ℝ)
11549adantr 480 . . . . 5 ((𝜑𝐴 ≠ 0) → (𝑀𝑐(ℜ‘𝐵)) ∈ ℝ)
116115, 113remulcld 11289 . . . 4 ((𝜑𝐴 ≠ 0) → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ∈ ℝ)
11751, 53, 54sylancl 586 . . . . . . 7 (𝜑 → ((abs‘𝐵) · π) ∈ ℝ)
118117reefcld 16121 . . . . . 6 (𝜑 → (exp‘((abs‘𝐵) · π)) ∈ ℝ)
119118adantr 480 . . . . 5 ((𝜑𝐴 ≠ 0) → (exp‘((abs‘𝐵) · π)) ∈ ℝ)
120115, 119remulcld 11289 . . . 4 ((𝜑𝐴 ≠ 0) → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))) ∈ ℝ)
12181rpefcld 16138 . . . . . 6 ((𝜑𝐴 ≠ 0) → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ∈ ℝ+)
122121rpge0d 13079 . . . . 5 ((𝜑𝐴 ≠ 0) → 0 ≤ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))))
12316adantr 480 . . . . . 6 ((𝜑𝐴 ≠ 0) → 𝑀 ∈ ℝ)
124 abscxpbnd.3 . . . . . . 7 (𝜑 → 0 ≤ (ℜ‘𝐵))
125124adantr 480 . . . . . 6 ((𝜑𝐴 ≠ 0) → 0 ≤ (ℜ‘𝐵))
12646adantr 480 . . . . . 6 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) ≤ 𝑀)
127110, 111, 123, 74, 125, 126cxple2ad 26782 . . . . 5 ((𝜑𝐴 ≠ 0) → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ≤ (𝑀𝑐(ℜ‘𝐵)))
128112, 115, 113, 122, 127lemul1ad 12205 . . . 4 ((𝜑𝐴 ≠ 0) → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
12957adantr 480 . . . . 5 ((𝜑𝐴 ≠ 0) → 0 ≤ (𝑀𝑐(ℜ‘𝐵)))
13088abscld 15472 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (abs‘(ℑ‘𝐵)) ∈ ℝ)
13180recnd 11287 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → -(ℑ‘(log‘𝐴)) ∈ ℂ)
132131abscld 15472 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (abs‘-(ℑ‘(log‘𝐴))) ∈ ℝ)
133130, 132remulcld 11289 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ∈ ℝ)
134117adantr 480 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((abs‘𝐵) · π) ∈ ℝ)
13581leabsd 15450 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ (abs‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))))
13688, 131absmuld 15490 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (abs‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))))
137135, 136breqtrd 5174 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))))
13866abscld 15472 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (abs‘𝐵) ∈ ℝ)
139138, 132remulcld 11289 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))) ∈ ℝ)
140131absge0d 15480 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → 0 ≤ (abs‘-(ℑ‘(log‘𝐴))))
141 absimle 15345 . . . . . . . . . 10 (𝐵 ∈ ℂ → (abs‘(ℑ‘𝐵)) ≤ (abs‘𝐵))
14266, 141syl 17 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (abs‘(ℑ‘𝐵)) ≤ (abs‘𝐵))
143130, 138, 132, 140, 142lemul1ad 12205 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))))
14453a1i 11 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → π ∈ ℝ)
14566absge0d 15480 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → 0 ≤ (abs‘𝐵))
14689absnegd 15485 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → (abs‘-(ℑ‘(log‘𝐴))) = (abs‘(ℑ‘(log‘𝐴))))
147 logimcl 26626 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
14843, 147sylan 580 . . . . . . . . . . . . 13 ((𝜑𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
149148simpld 494 . . . . . . . . . . . 12 ((𝜑𝐴 ≠ 0) → -π < (ℑ‘(log‘𝐴)))
15053renegcli 11568 . . . . . . . . . . . . 13 -π ∈ ℝ
151 ltle 11347 . . . . . . . . . . . . 13 ((-π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
152150, 79, 151sylancr 587 . . . . . . . . . . . 12 ((𝜑𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
153149, 152mpd 15 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → -π ≤ (ℑ‘(log‘𝐴)))
154148simprd 495 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ≤ π)
155 absle 15351 . . . . . . . . . . . 12 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
15679, 53, 155sylancl 586 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
157153, 154, 156mpbir2and 713 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → (abs‘(ℑ‘(log‘𝐴))) ≤ π)
158146, 157eqbrtrd 5170 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (abs‘-(ℑ‘(log‘𝐴))) ≤ π)
159132, 144, 138, 145, 158lemul2ad 12206 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · π))
160133, 139, 134, 143, 159letrd 11416 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · π))
16181, 133, 134, 137, 160letrd 11416 . . . . . 6 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π))
162 efle 16151 . . . . . . 7 ((((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℝ ∧ ((abs‘𝐵) · π) ∈ ℝ) → (((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π) ↔ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π))))
16381, 134, 162syl2anc 584 . . . . . 6 ((𝜑𝐴 ≠ 0) → (((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π) ↔ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π))))
164161, 163mpbid 232 . . . . 5 ((𝜑𝐴 ≠ 0) → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π)))
165113, 119, 115, 129, 164lemul2ad 12206 . . . 4 ((𝜑𝐴 ≠ 0) → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
166114, 116, 120, 128, 165letrd 11416 . . 3 ((𝜑𝐴 ≠ 0) → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
167109, 166eqbrtrd 5170 . 2 ((𝜑𝐴 ≠ 0) → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
16863, 167pm2.61dane 3027 1 (𝜑 → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cmin 11490  -cneg 11491  cre 15133  cim 15134  abscabs 15270  expce 16094  πcpi 16099  logclog 26611  𝑐ccxp 26612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-pi 16105  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917  df-log 26613  df-cxp 26614
This theorem is referenced by:  o1cxp  27033
  Copyright terms: Public domain W3C validator