MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abscxpbnd Structured version   Visualization version   GIF version

Theorem abscxpbnd 25811
Description: Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
abscxpbnd.1 (𝜑𝐴 ∈ ℂ)
abscxpbnd.2 (𝜑𝐵 ∈ ℂ)
abscxpbnd.3 (𝜑 → 0 ≤ (ℜ‘𝐵))
abscxpbnd.4 (𝜑𝑀 ∈ ℝ)
abscxpbnd.5 (𝜑 → (abs‘𝐴) ≤ 𝑀)
Assertion
Ref Expression
abscxpbnd (𝜑 → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))

Proof of Theorem abscxpbnd
StepHypRef Expression
1 1le1 11533 . . . . 5 1 ≤ 1
21a1i 11 . . . 4 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → 1 ≤ 1)
3 oveq12 7264 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴𝑐𝐵) = (0↑𝑐0))
43adantll 710 . . . . . . 7 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐𝐵) = (0↑𝑐0))
5 0cn 10898 . . . . . . . 8 0 ∈ ℂ
6 cxp0 25730 . . . . . . . 8 (0 ∈ ℂ → (0↑𝑐0) = 1)
75, 6ax-mp 5 . . . . . . 7 (0↑𝑐0) = 1
84, 7eqtrdi 2795 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐𝐵) = 1)
98fveq2d 6760 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (abs‘(𝐴𝑐𝐵)) = (abs‘1))
10 abs1 14937 . . . . 5 (abs‘1) = 1
119, 10eqtrdi 2795 . . . 4 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (abs‘(𝐴𝑐𝐵)) = 1)
12 fveq2 6756 . . . . . . . . 9 (𝐵 = 0 → (ℜ‘𝐵) = (ℜ‘0))
13 re0 14791 . . . . . . . . 9 (ℜ‘0) = 0
1412, 13eqtrdi 2795 . . . . . . . 8 (𝐵 = 0 → (ℜ‘𝐵) = 0)
1514oveq2d 7271 . . . . . . 7 (𝐵 = 0 → (𝑀𝑐(ℜ‘𝐵)) = (𝑀𝑐0))
16 abscxpbnd.4 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
1716recnd 10934 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
1817cxp0d 25765 . . . . . . . 8 (𝜑 → (𝑀𝑐0) = 1)
1918adantr 480 . . . . . . 7 ((𝜑𝐴 = 0) → (𝑀𝑐0) = 1)
2015, 19sylan9eqr 2801 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (𝑀𝑐(ℜ‘𝐵)) = 1)
21 simpr 484 . . . . . . . . . . 11 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → 𝐵 = 0)
2221abs00bd 14931 . . . . . . . . . 10 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (abs‘𝐵) = 0)
2322oveq1d 7270 . . . . . . . . 9 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → ((abs‘𝐵) · π) = (0 · π))
24 picn 25521 . . . . . . . . . 10 π ∈ ℂ
2524mul02i 11094 . . . . . . . . 9 (0 · π) = 0
2623, 25eqtrdi 2795 . . . . . . . 8 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → ((abs‘𝐵) · π) = 0)
2726fveq2d 6760 . . . . . . 7 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (exp‘((abs‘𝐵) · π)) = (exp‘0))
28 ef0 15728 . . . . . . 7 (exp‘0) = 1
2927, 28eqtrdi 2795 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (exp‘((abs‘𝐵) · π)) = 1)
3020, 29oveq12d 7273 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))) = (1 · 1))
31 1t1e1 12065 . . . . 5 (1 · 1) = 1
3230, 31eqtrdi 2795 . . . 4 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))) = 1)
332, 11, 323brtr4d 5102 . . 3 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
34 simplr 765 . . . . . . 7 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → 𝐴 = 0)
3534oveq1d 7270 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐𝐵) = (0↑𝑐𝐵))
36 abscxpbnd.2 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
3736adantr 480 . . . . . . 7 ((𝜑𝐴 = 0) → 𝐵 ∈ ℂ)
38 0cxp 25726 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (0↑𝑐𝐵) = 0)
3937, 38sylan 579 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (0↑𝑐𝐵) = 0)
4035, 39eqtrd 2778 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐𝐵) = 0)
4140abs00bd 14931 . . . 4 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (abs‘(𝐴𝑐𝐵)) = 0)
42 0red 10909 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
43 abscxpbnd.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
4443abscld 15076 . . . . . . . 8 (𝜑 → (abs‘𝐴) ∈ ℝ)
4543absge0d 15084 . . . . . . . 8 (𝜑 → 0 ≤ (abs‘𝐴))
46 abscxpbnd.5 . . . . . . . 8 (𝜑 → (abs‘𝐴) ≤ 𝑀)
4742, 44, 16, 45, 46letrd 11062 . . . . . . 7 (𝜑 → 0 ≤ 𝑀)
4836recld 14833 . . . . . . 7 (𝜑 → (ℜ‘𝐵) ∈ ℝ)
4916, 47, 48recxpcld 25783 . . . . . 6 (𝜑 → (𝑀𝑐(ℜ‘𝐵)) ∈ ℝ)
5049ad2antrr 722 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝑀𝑐(ℜ‘𝐵)) ∈ ℝ)
5136abscld 15076 . . . . . . . 8 (𝜑 → (abs‘𝐵) ∈ ℝ)
5251ad2antrr 722 . . . . . . 7 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (abs‘𝐵) ∈ ℝ)
53 pire 25520 . . . . . . 7 π ∈ ℝ
54 remulcl 10887 . . . . . . 7 (((abs‘𝐵) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘𝐵) · π) ∈ ℝ)
5552, 53, 54sylancl 585 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → ((abs‘𝐵) · π) ∈ ℝ)
5655reefcld 15725 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (exp‘((abs‘𝐵) · π)) ∈ ℝ)
5716, 47, 48cxpge0d 25784 . . . . . 6 (𝜑 → 0 ≤ (𝑀𝑐(ℜ‘𝐵)))
5857ad2antrr 722 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → 0 ≤ (𝑀𝑐(ℜ‘𝐵)))
5955rpefcld 15742 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (exp‘((abs‘𝐵) · π)) ∈ ℝ+)
6059rpge0d 12705 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → 0 ≤ (exp‘((abs‘𝐵) · π)))
6150, 56, 58, 60mulge0d 11482 . . . 4 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → 0 ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
6241, 61eqbrtrd 5092 . . 3 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
6333, 62pm2.61dane 3031 . 2 ((𝜑𝐴 = 0) → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
6443adantr 480 . . . . . 6 ((𝜑𝐴 ≠ 0) → 𝐴 ∈ ℂ)
65 simpr 484 . . . . . 6 ((𝜑𝐴 ≠ 0) → 𝐴 ≠ 0)
6636adantr 480 . . . . . 6 ((𝜑𝐴 ≠ 0) → 𝐵 ∈ ℂ)
6764, 65, 66cxpefd 25772 . . . . 5 ((𝜑𝐴 ≠ 0) → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
6867fveq2d 6760 . . . 4 ((𝜑𝐴 ≠ 0) → (abs‘(𝐴𝑐𝐵)) = (abs‘(exp‘(𝐵 · (log‘𝐴)))))
69 logcl 25629 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
7043, 69sylan 579 . . . . . 6 ((𝜑𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
7166, 70mulcld 10926 . . . . 5 ((𝜑𝐴 ≠ 0) → (𝐵 · (log‘𝐴)) ∈ ℂ)
72 absef 15834 . . . . 5 ((𝐵 · (log‘𝐴)) ∈ ℂ → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
7371, 72syl 17 . . . 4 ((𝜑𝐴 ≠ 0) → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
7466recld 14833 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (ℜ‘𝐵) ∈ ℝ)
7570recld 14833 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) ∈ ℝ)
7674, 75remulcld 10936 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℝ)
7776recnd 10934 . . . . . 6 ((𝜑𝐴 ≠ 0) → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℂ)
7866imcld 14834 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (ℑ‘𝐵) ∈ ℝ)
7970imcld 14834 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℝ)
8079renegcld 11332 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → -(ℑ‘(log‘𝐴)) ∈ ℝ)
8178, 80remulcld 10936 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℝ)
8281recnd 10934 . . . . . 6 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℂ)
83 efadd 15731 . . . . . 6 ((((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℂ ∧ ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℂ) → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
8477, 82, 83syl2anc 583 . . . . 5 ((𝜑𝐴 ≠ 0) → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
8578, 79remulcld 10936 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · (ℑ‘(log‘𝐴))) ∈ ℝ)
8685recnd 10934 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · (ℑ‘(log‘𝐴))) ∈ ℂ)
8777, 86negsubd 11268 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + -((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) − ((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
8878recnd 10934 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (ℑ‘𝐵) ∈ ℂ)
8979recnd 10934 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℂ)
9088, 89mulneg2d 11359 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) = -((ℑ‘𝐵) · (ℑ‘(log‘𝐴))))
9190oveq2d 7271 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + -((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
9266, 70remuld 14857 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (ℜ‘(𝐵 · (log‘𝐴))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) − ((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
9387, 91, 923eqtr4d 2788 . . . . . 6 ((𝜑𝐴 ≠ 0) → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = (ℜ‘(𝐵 · (log‘𝐴))))
9493fveq2d 6760 . . . . 5 ((𝜑𝐴 ≠ 0) → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
95 relog 25657 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) = (log‘(abs‘𝐴)))
9643, 95sylan 579 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) = (log‘(abs‘𝐴)))
9796oveq2d 7271 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) = ((ℜ‘𝐵) · (log‘(abs‘𝐴))))
9897fveq2d 6760 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) = (exp‘((ℜ‘𝐵) · (log‘(abs‘𝐴)))))
9944recnd 10934 . . . . . . . . 9 (𝜑 → (abs‘𝐴) ∈ ℂ)
10099adantr 480 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ)
10143abs00ad 14930 . . . . . . . . . 10 (𝜑 → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
102101necon3bid 2987 . . . . . . . . 9 (𝜑 → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
103102biimpar 477 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) ≠ 0)
10474recnd 10934 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (ℜ‘𝐵) ∈ ℂ)
105100, 103, 104cxpefd 25772 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) = (exp‘((ℜ‘𝐵) · (log‘(abs‘𝐴)))))
10698, 105eqtr4d 2781 . . . . . 6 ((𝜑𝐴 ≠ 0) → (exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) = ((abs‘𝐴)↑𝑐(ℜ‘𝐵)))
107106oveq1d 7270 . . . . 5 ((𝜑𝐴 ≠ 0) → ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
10884, 94, 1073eqtr3d 2786 . . . 4 ((𝜑𝐴 ≠ 0) → (exp‘(ℜ‘(𝐵 · (log‘𝐴)))) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
10968, 73, 1083eqtrd 2782 . . 3 ((𝜑𝐴 ≠ 0) → (abs‘(𝐴𝑐𝐵)) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
11064abscld 15076 . . . . . 6 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
11164absge0d 15084 . . . . . 6 ((𝜑𝐴 ≠ 0) → 0 ≤ (abs‘𝐴))
112110, 111, 74recxpcld 25783 . . . . 5 ((𝜑𝐴 ≠ 0) → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ∈ ℝ)
11381reefcld 15725 . . . . 5 ((𝜑𝐴 ≠ 0) → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ∈ ℝ)
114112, 113remulcld 10936 . . . 4 ((𝜑𝐴 ≠ 0) → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ∈ ℝ)
11549adantr 480 . . . . 5 ((𝜑𝐴 ≠ 0) → (𝑀𝑐(ℜ‘𝐵)) ∈ ℝ)
116115, 113remulcld 10936 . . . 4 ((𝜑𝐴 ≠ 0) → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ∈ ℝ)
11751, 53, 54sylancl 585 . . . . . . 7 (𝜑 → ((abs‘𝐵) · π) ∈ ℝ)
118117reefcld 15725 . . . . . 6 (𝜑 → (exp‘((abs‘𝐵) · π)) ∈ ℝ)
119118adantr 480 . . . . 5 ((𝜑𝐴 ≠ 0) → (exp‘((abs‘𝐵) · π)) ∈ ℝ)
120115, 119remulcld 10936 . . . 4 ((𝜑𝐴 ≠ 0) → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))) ∈ ℝ)
12181rpefcld 15742 . . . . . 6 ((𝜑𝐴 ≠ 0) → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ∈ ℝ+)
122121rpge0d 12705 . . . . 5 ((𝜑𝐴 ≠ 0) → 0 ≤ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))))
12316adantr 480 . . . . . 6 ((𝜑𝐴 ≠ 0) → 𝑀 ∈ ℝ)
124 abscxpbnd.3 . . . . . . 7 (𝜑 → 0 ≤ (ℜ‘𝐵))
125124adantr 480 . . . . . 6 ((𝜑𝐴 ≠ 0) → 0 ≤ (ℜ‘𝐵))
12646adantr 480 . . . . . 6 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) ≤ 𝑀)
127110, 111, 123, 74, 125, 126cxple2ad 25785 . . . . 5 ((𝜑𝐴 ≠ 0) → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ≤ (𝑀𝑐(ℜ‘𝐵)))
128112, 115, 113, 122, 127lemul1ad 11844 . . . 4 ((𝜑𝐴 ≠ 0) → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
12957adantr 480 . . . . 5 ((𝜑𝐴 ≠ 0) → 0 ≤ (𝑀𝑐(ℜ‘𝐵)))
13088abscld 15076 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (abs‘(ℑ‘𝐵)) ∈ ℝ)
13180recnd 10934 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → -(ℑ‘(log‘𝐴)) ∈ ℂ)
132131abscld 15076 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (abs‘-(ℑ‘(log‘𝐴))) ∈ ℝ)
133130, 132remulcld 10936 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ∈ ℝ)
134117adantr 480 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((abs‘𝐵) · π) ∈ ℝ)
13581leabsd 15054 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ (abs‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))))
13688, 131absmuld 15094 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (abs‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))))
137135, 136breqtrd 5096 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))))
13866abscld 15076 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (abs‘𝐵) ∈ ℝ)
139138, 132remulcld 10936 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))) ∈ ℝ)
140131absge0d 15084 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → 0 ≤ (abs‘-(ℑ‘(log‘𝐴))))
141 absimle 14949 . . . . . . . . . 10 (𝐵 ∈ ℂ → (abs‘(ℑ‘𝐵)) ≤ (abs‘𝐵))
14266, 141syl 17 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (abs‘(ℑ‘𝐵)) ≤ (abs‘𝐵))
143130, 138, 132, 140, 142lemul1ad 11844 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))))
14453a1i 11 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → π ∈ ℝ)
14566absge0d 15084 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → 0 ≤ (abs‘𝐵))
14689absnegd 15089 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → (abs‘-(ℑ‘(log‘𝐴))) = (abs‘(ℑ‘(log‘𝐴))))
147 logimcl 25630 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
14843, 147sylan 579 . . . . . . . . . . . . 13 ((𝜑𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
149148simpld 494 . . . . . . . . . . . 12 ((𝜑𝐴 ≠ 0) → -π < (ℑ‘(log‘𝐴)))
15053renegcli 11212 . . . . . . . . . . . . 13 -π ∈ ℝ
151 ltle 10994 . . . . . . . . . . . . 13 ((-π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
152150, 79, 151sylancr 586 . . . . . . . . . . . 12 ((𝜑𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
153149, 152mpd 15 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → -π ≤ (ℑ‘(log‘𝐴)))
154148simprd 495 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ≤ π)
155 absle 14955 . . . . . . . . . . . 12 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
15679, 53, 155sylancl 585 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
157153, 154, 156mpbir2and 709 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → (abs‘(ℑ‘(log‘𝐴))) ≤ π)
158146, 157eqbrtrd 5092 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (abs‘-(ℑ‘(log‘𝐴))) ≤ π)
159132, 144, 138, 145, 158lemul2ad 11845 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · π))
160133, 139, 134, 143, 159letrd 11062 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · π))
16181, 133, 134, 137, 160letrd 11062 . . . . . 6 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π))
162 efle 15755 . . . . . . 7 ((((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℝ ∧ ((abs‘𝐵) · π) ∈ ℝ) → (((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π) ↔ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π))))
16381, 134, 162syl2anc 583 . . . . . 6 ((𝜑𝐴 ≠ 0) → (((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π) ↔ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π))))
164161, 163mpbid 231 . . . . 5 ((𝜑𝐴 ≠ 0) → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π)))
165113, 119, 115, 129, 164lemul2ad 11845 . . . 4 ((𝜑𝐴 ≠ 0) → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
166114, 116, 120, 128, 165letrd 11062 . . 3 ((𝜑𝐴 ≠ 0) → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
167109, 166eqbrtrd 5092 . 2 ((𝜑𝐴 ≠ 0) → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
16863, 167pm2.61dane 3031 1 (𝜑 → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135  -cneg 11136  cre 14736  cim 14737  abscabs 14873  expce 15699  πcpi 15704  logclog 25615  𝑐ccxp 25616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-cxp 25618
This theorem is referenced by:  o1cxp  26029
  Copyright terms: Public domain W3C validator