Proof of Theorem abscxpbnd
Step | Hyp | Ref
| Expression |
1 | | 1le1 11075 |
. . . . 5
⊢ 1 ≤
1 |
2 | 1 | a1i 11 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 = 0) → 1 ≤ 1) |
3 | | oveq12 6991 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴↑𝑐𝐵) =
(0↑𝑐0)) |
4 | 3 | adantll 702 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐴↑𝑐𝐵) =
(0↑𝑐0)) |
5 | | 0cn 10437 |
. . . . . . . 8
⊢ 0 ∈
ℂ |
6 | | cxp0 24969 |
. . . . . . . 8
⊢ (0 ∈
ℂ → (0↑𝑐0) = 1) |
7 | 5, 6 | ax-mp 5 |
. . . . . . 7
⊢
(0↑𝑐0) = 1 |
8 | 4, 7 | syl6eq 2832 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐴↑𝑐𝐵) = 1) |
9 | 8 | fveq2d 6508 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (abs‘(𝐴↑𝑐𝐵)) = (abs‘1)) |
10 | | abs1 14524 |
. . . . 5
⊢
(abs‘1) = 1 |
11 | 9, 10 | syl6eq 2832 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (abs‘(𝐴↑𝑐𝐵)) = 1) |
12 | | fveq2 6504 |
. . . . . . . . 9
⊢ (𝐵 = 0 → (ℜ‘𝐵) =
(ℜ‘0)) |
13 | | re0 14378 |
. . . . . . . . 9
⊢
(ℜ‘0) = 0 |
14 | 12, 13 | syl6eq 2832 |
. . . . . . . 8
⊢ (𝐵 = 0 → (ℜ‘𝐵) = 0) |
15 | 14 | oveq2d 6998 |
. . . . . . 7
⊢ (𝐵 = 0 → (𝑀↑𝑐(ℜ‘𝐵)) = (𝑀↑𝑐0)) |
16 | | abscxpbnd.4 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℝ) |
17 | 16 | recnd 10474 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℂ) |
18 | 17 | cxp0d 25004 |
. . . . . . . 8
⊢ (𝜑 → (𝑀↑𝑐0) =
1) |
19 | 18 | adantr 473 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 = 0) → (𝑀↑𝑐0) =
1) |
20 | 15, 19 | sylan9eqr 2838 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝑀↑𝑐(ℜ‘𝐵)) = 1) |
21 | | simpr 477 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 = 0) → 𝐵 = 0) |
22 | 21 | abs00bd 14518 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (abs‘𝐵) = 0) |
23 | 22 | oveq1d 6997 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 = 0) → ((abs‘𝐵) · π) = (0 ·
π)) |
24 | | picn 24763 |
. . . . . . . . . 10
⊢ π
∈ ℂ |
25 | 24 | mul02i 10635 |
. . . . . . . . 9
⊢ (0
· π) = 0 |
26 | 23, 25 | syl6eq 2832 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 = 0) → ((abs‘𝐵) · π) = 0) |
27 | 26 | fveq2d 6508 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (exp‘((abs‘𝐵) · π)) =
(exp‘0)) |
28 | | ef0 15310 |
. . . . . . 7
⊢
(exp‘0) = 1 |
29 | 27, 28 | syl6eq 2832 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (exp‘((abs‘𝐵) · π)) =
1) |
30 | 20, 29 | oveq12d 7000 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 = 0) → ((𝑀↑𝑐(ℜ‘𝐵)) ·
(exp‘((abs‘𝐵)
· π))) = (1 · 1)) |
31 | | 1t1e1 11615 |
. . . . 5
⊢ (1
· 1) = 1 |
32 | 30, 31 | syl6eq 2832 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 = 0) → ((𝑀↑𝑐(ℜ‘𝐵)) ·
(exp‘((abs‘𝐵)
· π))) = 1) |
33 | 2, 11, 32 | 3brtr4d 4966 |
. . 3
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (abs‘(𝐴↑𝑐𝐵)) ≤ ((𝑀↑𝑐(ℜ‘𝐵)) ·
(exp‘((abs‘𝐵)
· π)))) |
34 | | simplr 757 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → 𝐴 = 0) |
35 | 34 | oveq1d 6997 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴↑𝑐𝐵) = (0↑𝑐𝐵)) |
36 | | abscxpbnd.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ ℂ) |
37 | 36 | adantr 473 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 = 0) → 𝐵 ∈ ℂ) |
38 | | 0cxp 24965 |
. . . . . . 7
⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) →
(0↑𝑐𝐵) = 0) |
39 | 37, 38 | sylan 572 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) →
(0↑𝑐𝐵) = 0) |
40 | 35, 39 | eqtrd 2816 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴↑𝑐𝐵) = 0) |
41 | 40 | abs00bd 14518 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (abs‘(𝐴↑𝑐𝐵)) = 0) |
42 | | 0red 10449 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℝ) |
43 | | abscxpbnd.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℂ) |
44 | 43 | abscld 14663 |
. . . . . . . 8
⊢ (𝜑 → (abs‘𝐴) ∈
ℝ) |
45 | 43 | absge0d 14671 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ (abs‘𝐴)) |
46 | | abscxpbnd.5 |
. . . . . . . 8
⊢ (𝜑 → (abs‘𝐴) ≤ 𝑀) |
47 | 42, 44, 16, 45, 46 | letrd 10603 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ 𝑀) |
48 | 36 | recld 14420 |
. . . . . . 7
⊢ (𝜑 → (ℜ‘𝐵) ∈
ℝ) |
49 | 16, 47, 48 | recxpcld 25022 |
. . . . . 6
⊢ (𝜑 → (𝑀↑𝑐(ℜ‘𝐵)) ∈
ℝ) |
50 | 49 | ad2antrr 714 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝑀↑𝑐(ℜ‘𝐵)) ∈
ℝ) |
51 | 36 | abscld 14663 |
. . . . . . . 8
⊢ (𝜑 → (abs‘𝐵) ∈
ℝ) |
52 | 51 | ad2antrr 714 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (abs‘𝐵) ∈ ℝ) |
53 | | pire 24762 |
. . . . . . 7
⊢ π
∈ ℝ |
54 | | remulcl 10426 |
. . . . . . 7
⊢
(((abs‘𝐵)
∈ ℝ ∧ π ∈ ℝ) → ((abs‘𝐵) · π) ∈
ℝ) |
55 | 52, 53, 54 | sylancl 578 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → ((abs‘𝐵) · π) ∈
ℝ) |
56 | 55 | reefcld 15307 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (exp‘((abs‘𝐵) · π)) ∈
ℝ) |
57 | 16, 47, 48 | cxpge0d 25023 |
. . . . . 6
⊢ (𝜑 → 0 ≤ (𝑀↑𝑐(ℜ‘𝐵))) |
58 | 57 | ad2antrr 714 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → 0 ≤ (𝑀↑𝑐(ℜ‘𝐵))) |
59 | 55 | rpefcld 15324 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (exp‘((abs‘𝐵) · π)) ∈
ℝ+) |
60 | 59 | rpge0d 12258 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → 0 ≤
(exp‘((abs‘𝐵)
· π))) |
61 | 50, 56, 58, 60 | mulge0d 11024 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → 0 ≤ ((𝑀↑𝑐(ℜ‘𝐵)) ·
(exp‘((abs‘𝐵)
· π)))) |
62 | 41, 61 | eqbrtrd 4956 |
. . 3
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (abs‘(𝐴↑𝑐𝐵)) ≤ ((𝑀↑𝑐(ℜ‘𝐵)) ·
(exp‘((abs‘𝐵)
· π)))) |
63 | 33, 62 | pm2.61dane 3057 |
. 2
⊢ ((𝜑 ∧ 𝐴 = 0) → (abs‘(𝐴↑𝑐𝐵)) ≤ ((𝑀↑𝑐(ℜ‘𝐵)) ·
(exp‘((abs‘𝐵)
· π)))) |
64 | 43 | adantr 473 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ) |
65 | | simpr 477 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0) |
66 | 36 | adantr 473 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → 𝐵 ∈ ℂ) |
67 | 64, 65, 66 | cxpefd 25011 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) |
68 | 67 | fveq2d 6508 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (abs‘(𝐴↑𝑐𝐵)) =
(abs‘(exp‘(𝐵
· (log‘𝐴))))) |
69 | | logcl 24868 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈
ℂ) |
70 | 43, 69 | sylan 572 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ) |
71 | 66, 70 | mulcld 10466 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (𝐵 · (log‘𝐴)) ∈ ℂ) |
72 | | absef 15416 |
. . . . 5
⊢ ((𝐵 · (log‘𝐴)) ∈ ℂ →
(abs‘(exp‘(𝐵
· (log‘𝐴)))) =
(exp‘(ℜ‘(𝐵
· (log‘𝐴))))) |
73 | 71, 72 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (abs‘(exp‘(𝐵 · (log‘𝐴)))) =
(exp‘(ℜ‘(𝐵
· (log‘𝐴))))) |
74 | 66 | recld 14420 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (ℜ‘𝐵) ∈
ℝ) |
75 | 70 | recld 14420 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ≠ 0) →
(ℜ‘(log‘𝐴)) ∈ ℝ) |
76 | 74, 75 | remulcld 10476 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ((ℜ‘𝐵) ·
(ℜ‘(log‘𝐴))) ∈ ℝ) |
77 | 76 | recnd 10474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ((ℜ‘𝐵) ·
(ℜ‘(log‘𝐴))) ∈ ℂ) |
78 | 66 | imcld 14421 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (ℑ‘𝐵) ∈
ℝ) |
79 | 70 | imcld 14421 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ≠ 0) →
(ℑ‘(log‘𝐴)) ∈ ℝ) |
80 | 79 | renegcld 10874 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ≠ 0) →
-(ℑ‘(log‘𝐴)) ∈ ℝ) |
81 | 78, 80 | remulcld 10476 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ((ℑ‘𝐵) ·
-(ℑ‘(log‘𝐴))) ∈ ℝ) |
82 | 81 | recnd 10474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ((ℑ‘𝐵) ·
-(ℑ‘(log‘𝐴))) ∈ ℂ) |
83 | | efadd 15313 |
. . . . . 6
⊢
((((ℜ‘𝐵)
· (ℜ‘(log‘𝐴))) ∈ ℂ ∧
((ℑ‘𝐵) ·
-(ℑ‘(log‘𝐴))) ∈ ℂ) →
(exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) ·
-(ℑ‘(log‘𝐴))))) = ((exp‘((ℜ‘𝐵) ·
(ℜ‘(log‘𝐴)))) ·
(exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))))) |
84 | 77, 82, 83 | syl2anc 576 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 0) →
(exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) ·
-(ℑ‘(log‘𝐴))))) = ((exp‘((ℜ‘𝐵) ·
(ℜ‘(log‘𝐴)))) ·
(exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))))) |
85 | 78, 79 | remulcld 10476 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ((ℑ‘𝐵) ·
(ℑ‘(log‘𝐴))) ∈ ℝ) |
86 | 85 | recnd 10474 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ((ℑ‘𝐵) ·
(ℑ‘(log‘𝐴))) ∈ ℂ) |
87 | 77, 86 | negsubd 10810 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (((ℜ‘𝐵) ·
(ℜ‘(log‘𝐴))) + -((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))) = (((ℜ‘𝐵) ·
(ℜ‘(log‘𝐴))) − ((ℑ‘𝐵) ·
(ℑ‘(log‘𝐴))))) |
88 | 78 | recnd 10474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (ℑ‘𝐵) ∈
ℂ) |
89 | 79 | recnd 10474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ≠ 0) →
(ℑ‘(log‘𝐴)) ∈ ℂ) |
90 | 88, 89 | mulneg2d 10901 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ((ℑ‘𝐵) ·
-(ℑ‘(log‘𝐴))) = -((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))) |
91 | 90 | oveq2d 6998 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (((ℜ‘𝐵) ·
(ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = (((ℜ‘𝐵) ·
(ℜ‘(log‘𝐴))) + -((ℑ‘𝐵) · (ℑ‘(log‘𝐴))))) |
92 | 66, 70 | remuld 14444 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (ℜ‘(𝐵 · (log‘𝐴))) = (((ℜ‘𝐵) ·
(ℜ‘(log‘𝐴))) − ((ℑ‘𝐵) ·
(ℑ‘(log‘𝐴))))) |
93 | 87, 91, 92 | 3eqtr4d 2826 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (((ℜ‘𝐵) ·
(ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = (ℜ‘(𝐵 · (log‘𝐴)))) |
94 | 93 | fveq2d 6508 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 0) →
(exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) ·
-(ℑ‘(log‘𝐴))))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴))))) |
95 | | relog 24896 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
(ℜ‘(log‘𝐴)) = (log‘(abs‘𝐴))) |
96 | 43, 95 | sylan 572 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ≠ 0) →
(ℜ‘(log‘𝐴)) = (log‘(abs‘𝐴))) |
97 | 96 | oveq2d 6998 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ((ℜ‘𝐵) ·
(ℜ‘(log‘𝐴))) = ((ℜ‘𝐵) · (log‘(abs‘𝐴)))) |
98 | 97 | fveq2d 6508 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ≠ 0) →
(exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) =
(exp‘((ℜ‘𝐵) · (log‘(abs‘𝐴))))) |
99 | 44 | recnd 10474 |
. . . . . . . . 9
⊢ (𝜑 → (abs‘𝐴) ∈
ℂ) |
100 | 99 | adantr 473 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ) |
101 | 43 | abs00ad 14517 |
. . . . . . . . . 10
⊢ (𝜑 → ((abs‘𝐴) = 0 ↔ 𝐴 = 0)) |
102 | 101 | necon3bid 3013 |
. . . . . . . . 9
⊢ (𝜑 → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0)) |
103 | 102 | biimpar 470 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (abs‘𝐴) ≠ 0) |
104 | 74 | recnd 10474 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (ℜ‘𝐵) ∈
ℂ) |
105 | 100, 103,
104 | cxpefd 25011 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) =
(exp‘((ℜ‘𝐵)
· (log‘(abs‘𝐴))))) |
106 | 98, 105 | eqtr4d 2819 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ 0) →
(exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) = ((abs‘𝐴)↑𝑐(ℜ‘𝐵))) |
107 | 106 | oveq1d 6997 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 0) →
((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) ·
(exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ·
(exp‘((ℑ‘𝐵)
· -(ℑ‘(log‘𝐴)))))) |
108 | 84, 94, 107 | 3eqtr3d 2824 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ 0) →
(exp‘(ℜ‘(𝐵
· (log‘𝐴)))) =
(((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ·
(exp‘((ℑ‘𝐵)
· -(ℑ‘(log‘𝐴)))))) |
109 | 68, 73, 108 | 3eqtrd 2820 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (abs‘(𝐴↑𝑐𝐵)) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ·
(exp‘((ℑ‘𝐵)
· -(ℑ‘(log‘𝐴)))))) |
110 | 64 | abscld 14663 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ) |
111 | 64 | absge0d 14671 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → 0 ≤ (abs‘𝐴)) |
112 | 110, 111,
74 | recxpcld 25022 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ∈
ℝ) |
113 | 81 | reefcld 15307 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 0) →
(exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ∈
ℝ) |
114 | 112, 113 | remulcld 10476 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ·
(exp‘((ℑ‘𝐵)
· -(ℑ‘(log‘𝐴))))) ∈ ℝ) |
115 | 49 | adantr 473 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (𝑀↑𝑐(ℜ‘𝐵)) ∈
ℝ) |
116 | 115, 113 | remulcld 10476 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ((𝑀↑𝑐(ℜ‘𝐵)) ·
(exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ∈
ℝ) |
117 | 51, 53, 54 | sylancl 578 |
. . . . . . 7
⊢ (𝜑 → ((abs‘𝐵) · π) ∈
ℝ) |
118 | 117 | reefcld 15307 |
. . . . . 6
⊢ (𝜑 →
(exp‘((abs‘𝐵)
· π)) ∈ ℝ) |
119 | 118 | adantr 473 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (exp‘((abs‘𝐵) · π)) ∈
ℝ) |
120 | 115, 119 | remulcld 10476 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ((𝑀↑𝑐(ℜ‘𝐵)) ·
(exp‘((abs‘𝐵)
· π))) ∈ ℝ) |
121 | 81 | rpefcld 15324 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ 0) →
(exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ∈
ℝ+) |
122 | 121 | rpge0d 12258 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → 0 ≤
(exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) |
123 | 16 | adantr 473 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → 𝑀 ∈ ℝ) |
124 | | abscxpbnd.3 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ (ℜ‘𝐵)) |
125 | 124 | adantr 473 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → 0 ≤ (ℜ‘𝐵)) |
126 | 46 | adantr 473 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (abs‘𝐴) ≤ 𝑀) |
127 | 110, 111,
123, 74, 125, 126 | cxple2ad 25024 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ≤ (𝑀↑𝑐(ℜ‘𝐵))) |
128 | 112, 115,
113, 122, 127 | lemul1ad 11386 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ·
(exp‘((ℑ‘𝐵)
· -(ℑ‘(log‘𝐴))))) ≤ ((𝑀↑𝑐(ℜ‘𝐵)) ·
(exp‘((ℑ‘𝐵)
· -(ℑ‘(log‘𝐴)))))) |
129 | 57 | adantr 473 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → 0 ≤ (𝑀↑𝑐(ℜ‘𝐵))) |
130 | 88 | abscld 14663 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ≠ 0) →
(abs‘(ℑ‘𝐵)) ∈ ℝ) |
131 | 80 | recnd 10474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ≠ 0) →
-(ℑ‘(log‘𝐴)) ∈ ℂ) |
132 | 131 | abscld 14663 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ≠ 0) →
(abs‘-(ℑ‘(log‘𝐴))) ∈ ℝ) |
133 | 130, 132 | remulcld 10476 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ≠ 0) →
((abs‘(ℑ‘𝐵)) ·
(abs‘-(ℑ‘(log‘𝐴)))) ∈ ℝ) |
134 | 117 | adantr 473 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ((abs‘𝐵) · π) ∈
ℝ) |
135 | 81 | leabsd 14641 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ((ℑ‘𝐵) ·
-(ℑ‘(log‘𝐴))) ≤ (abs‘((ℑ‘𝐵) ·
-(ℑ‘(log‘𝐴))))) |
136 | 88, 131 | absmuld 14681 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ≠ 0) →
(abs‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) =
((abs‘(ℑ‘𝐵)) ·
(abs‘-(ℑ‘(log‘𝐴))))) |
137 | 135, 136 | breqtrd 4960 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ((ℑ‘𝐵) ·
-(ℑ‘(log‘𝐴))) ≤ ((abs‘(ℑ‘𝐵)) ·
(abs‘-(ℑ‘(log‘𝐴))))) |
138 | 66 | abscld 14663 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (abs‘𝐵) ∈ ℝ) |
139 | 138, 132 | remulcld 10476 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ((abs‘𝐵) ·
(abs‘-(ℑ‘(log‘𝐴)))) ∈ ℝ) |
140 | 131 | absge0d 14671 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → 0 ≤
(abs‘-(ℑ‘(log‘𝐴)))) |
141 | | absimle 14536 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℂ →
(abs‘(ℑ‘𝐵)) ≤ (abs‘𝐵)) |
142 | 66, 141 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ≠ 0) →
(abs‘(ℑ‘𝐵)) ≤ (abs‘𝐵)) |
143 | 130, 138,
132, 140, 142 | lemul1ad 11386 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ≠ 0) →
((abs‘(ℑ‘𝐵)) ·
(abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) ·
(abs‘-(ℑ‘(log‘𝐴))))) |
144 | 53 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → π ∈
ℝ) |
145 | 66 | absge0d 14671 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → 0 ≤ (abs‘𝐵)) |
146 | 89 | absnegd 14676 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ≠ 0) →
(abs‘-(ℑ‘(log‘𝐴))) =
(abs‘(ℑ‘(log‘𝐴)))) |
147 | | logimcl 24869 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)) |
148 | 43, 147 | sylan 572 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (-π <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)) |
149 | 148 | simpld 487 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → -π <
(ℑ‘(log‘𝐴))) |
150 | 53 | renegcli 10754 |
. . . . . . . . . . . . 13
⊢ -π
∈ ℝ |
151 | | ltle 10535 |
. . . . . . . . . . . . 13
⊢ ((-π
∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π <
(ℑ‘(log‘𝐴)) → -π ≤
(ℑ‘(log‘𝐴)))) |
152 | 150, 79, 151 | sylancr 579 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (-π <
(ℑ‘(log‘𝐴)) → -π ≤
(ℑ‘(log‘𝐴)))) |
153 | 149, 152 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → -π ≤
(ℑ‘(log‘𝐴))) |
154 | 148 | simprd 488 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐴 ≠ 0) →
(ℑ‘(log‘𝐴)) ≤ π) |
155 | | absle 14542 |
. . . . . . . . . . . 12
⊢
(((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ)
→ ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))) |
156 | 79, 53, 155 | sylancl 578 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐴 ≠ 0) →
((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))) |
157 | 153, 154,
156 | mpbir2and 701 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ≠ 0) →
(abs‘(ℑ‘(log‘𝐴))) ≤ π) |
158 | 146, 157 | eqbrtrd 4956 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ≠ 0) →
(abs‘-(ℑ‘(log‘𝐴))) ≤ π) |
159 | 132, 144,
138, 145, 158 | lemul2ad 11387 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ((abs‘𝐵) ·
(abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · π)) |
160 | 133, 139,
134, 143, 159 | letrd 10603 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ≠ 0) →
((abs‘(ℑ‘𝐵)) ·
(abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · π)) |
161 | 81, 133, 134, 137, 160 | letrd 10603 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ((ℑ‘𝐵) ·
-(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π)) |
162 | | efle 15337 |
. . . . . . 7
⊢
((((ℑ‘𝐵)
· -(ℑ‘(log‘𝐴))) ∈ ℝ ∧ ((abs‘𝐵) · π) ∈ ℝ)
→ (((ℑ‘𝐵)
· -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π) ↔
(exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤
(exp‘((abs‘𝐵)
· π)))) |
163 | 81, 134, 162 | syl2anc 576 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (((ℑ‘𝐵) ·
-(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π) ↔
(exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤
(exp‘((abs‘𝐵)
· π)))) |
164 | 161, 163 | mpbid 224 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 0) →
(exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤
(exp‘((abs‘𝐵)
· π))) |
165 | 113, 119,
115, 129, 164 | lemul2ad 11387 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ((𝑀↑𝑐(ℜ‘𝐵)) ·
(exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀↑𝑐(ℜ‘𝐵)) ·
(exp‘((abs‘𝐵)
· π)))) |
166 | 114, 116,
120, 128, 165 | letrd 10603 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ·
(exp‘((ℑ‘𝐵)
· -(ℑ‘(log‘𝐴))))) ≤ ((𝑀↑𝑐(ℜ‘𝐵)) ·
(exp‘((abs‘𝐵)
· π)))) |
167 | 109, 166 | eqbrtrd 4956 |
. 2
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (abs‘(𝐴↑𝑐𝐵)) ≤ ((𝑀↑𝑐(ℜ‘𝐵)) ·
(exp‘((abs‘𝐵)
· π)))) |
168 | 63, 167 | pm2.61dane 3057 |
1
⊢ (𝜑 → (abs‘(𝐴↑𝑐𝐵)) ≤ ((𝑀↑𝑐(ℜ‘𝐵)) ·
(exp‘((abs‘𝐵)
· π)))) |