MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abscxpbnd Structured version   Visualization version   GIF version

Theorem abscxpbnd 25337
Description: Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
abscxpbnd.1 (𝜑𝐴 ∈ ℂ)
abscxpbnd.2 (𝜑𝐵 ∈ ℂ)
abscxpbnd.3 (𝜑 → 0 ≤ (ℜ‘𝐵))
abscxpbnd.4 (𝜑𝑀 ∈ ℝ)
abscxpbnd.5 (𝜑 → (abs‘𝐴) ≤ 𝑀)
Assertion
Ref Expression
abscxpbnd (𝜑 → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))

Proof of Theorem abscxpbnd
StepHypRef Expression
1 1le1 11271 . . . . 5 1 ≤ 1
21a1i 11 . . . 4 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → 1 ≤ 1)
3 oveq12 7168 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴𝑐𝐵) = (0↑𝑐0))
43adantll 712 . . . . . . 7 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐𝐵) = (0↑𝑐0))
5 0cn 10636 . . . . . . . 8 0 ∈ ℂ
6 cxp0 25256 . . . . . . . 8 (0 ∈ ℂ → (0↑𝑐0) = 1)
75, 6ax-mp 5 . . . . . . 7 (0↑𝑐0) = 1
84, 7syl6eq 2875 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐𝐵) = 1)
98fveq2d 6677 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (abs‘(𝐴𝑐𝐵)) = (abs‘1))
10 abs1 14660 . . . . 5 (abs‘1) = 1
119, 10syl6eq 2875 . . . 4 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (abs‘(𝐴𝑐𝐵)) = 1)
12 fveq2 6673 . . . . . . . . 9 (𝐵 = 0 → (ℜ‘𝐵) = (ℜ‘0))
13 re0 14514 . . . . . . . . 9 (ℜ‘0) = 0
1412, 13syl6eq 2875 . . . . . . . 8 (𝐵 = 0 → (ℜ‘𝐵) = 0)
1514oveq2d 7175 . . . . . . 7 (𝐵 = 0 → (𝑀𝑐(ℜ‘𝐵)) = (𝑀𝑐0))
16 abscxpbnd.4 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
1716recnd 10672 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
1817cxp0d 25291 . . . . . . . 8 (𝜑 → (𝑀𝑐0) = 1)
1918adantr 483 . . . . . . 7 ((𝜑𝐴 = 0) → (𝑀𝑐0) = 1)
2015, 19sylan9eqr 2881 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (𝑀𝑐(ℜ‘𝐵)) = 1)
21 simpr 487 . . . . . . . . . . 11 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → 𝐵 = 0)
2221abs00bd 14654 . . . . . . . . . 10 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (abs‘𝐵) = 0)
2322oveq1d 7174 . . . . . . . . 9 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → ((abs‘𝐵) · π) = (0 · π))
24 picn 25048 . . . . . . . . . 10 π ∈ ℂ
2524mul02i 10832 . . . . . . . . 9 (0 · π) = 0
2623, 25syl6eq 2875 . . . . . . . 8 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → ((abs‘𝐵) · π) = 0)
2726fveq2d 6677 . . . . . . 7 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (exp‘((abs‘𝐵) · π)) = (exp‘0))
28 ef0 15447 . . . . . . 7 (exp‘0) = 1
2927, 28syl6eq 2875 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (exp‘((abs‘𝐵) · π)) = 1)
3020, 29oveq12d 7177 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))) = (1 · 1))
31 1t1e1 11802 . . . . 5 (1 · 1) = 1
3230, 31syl6eq 2875 . . . 4 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))) = 1)
332, 11, 323brtr4d 5101 . . 3 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
34 simplr 767 . . . . . . 7 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → 𝐴 = 0)
3534oveq1d 7174 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐𝐵) = (0↑𝑐𝐵))
36 abscxpbnd.2 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
3736adantr 483 . . . . . . 7 ((𝜑𝐴 = 0) → 𝐵 ∈ ℂ)
38 0cxp 25252 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (0↑𝑐𝐵) = 0)
3937, 38sylan 582 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (0↑𝑐𝐵) = 0)
4035, 39eqtrd 2859 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐𝐵) = 0)
4140abs00bd 14654 . . . 4 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (abs‘(𝐴𝑐𝐵)) = 0)
42 0red 10647 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
43 abscxpbnd.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
4443abscld 14799 . . . . . . . 8 (𝜑 → (abs‘𝐴) ∈ ℝ)
4543absge0d 14807 . . . . . . . 8 (𝜑 → 0 ≤ (abs‘𝐴))
46 abscxpbnd.5 . . . . . . . 8 (𝜑 → (abs‘𝐴) ≤ 𝑀)
4742, 44, 16, 45, 46letrd 10800 . . . . . . 7 (𝜑 → 0 ≤ 𝑀)
4836recld 14556 . . . . . . 7 (𝜑 → (ℜ‘𝐵) ∈ ℝ)
4916, 47, 48recxpcld 25309 . . . . . 6 (𝜑 → (𝑀𝑐(ℜ‘𝐵)) ∈ ℝ)
5049ad2antrr 724 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝑀𝑐(ℜ‘𝐵)) ∈ ℝ)
5136abscld 14799 . . . . . . . 8 (𝜑 → (abs‘𝐵) ∈ ℝ)
5251ad2antrr 724 . . . . . . 7 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (abs‘𝐵) ∈ ℝ)
53 pire 25047 . . . . . . 7 π ∈ ℝ
54 remulcl 10625 . . . . . . 7 (((abs‘𝐵) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘𝐵) · π) ∈ ℝ)
5552, 53, 54sylancl 588 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → ((abs‘𝐵) · π) ∈ ℝ)
5655reefcld 15444 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (exp‘((abs‘𝐵) · π)) ∈ ℝ)
5716, 47, 48cxpge0d 25310 . . . . . 6 (𝜑 → 0 ≤ (𝑀𝑐(ℜ‘𝐵)))
5857ad2antrr 724 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → 0 ≤ (𝑀𝑐(ℜ‘𝐵)))
5955rpefcld 15461 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (exp‘((abs‘𝐵) · π)) ∈ ℝ+)
6059rpge0d 12438 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → 0 ≤ (exp‘((abs‘𝐵) · π)))
6150, 56, 58, 60mulge0d 11220 . . . 4 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → 0 ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
6241, 61eqbrtrd 5091 . . 3 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
6333, 62pm2.61dane 3107 . 2 ((𝜑𝐴 = 0) → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
6443adantr 483 . . . . . 6 ((𝜑𝐴 ≠ 0) → 𝐴 ∈ ℂ)
65 simpr 487 . . . . . 6 ((𝜑𝐴 ≠ 0) → 𝐴 ≠ 0)
6636adantr 483 . . . . . 6 ((𝜑𝐴 ≠ 0) → 𝐵 ∈ ℂ)
6764, 65, 66cxpefd 25298 . . . . 5 ((𝜑𝐴 ≠ 0) → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
6867fveq2d 6677 . . . 4 ((𝜑𝐴 ≠ 0) → (abs‘(𝐴𝑐𝐵)) = (abs‘(exp‘(𝐵 · (log‘𝐴)))))
69 logcl 25155 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
7043, 69sylan 582 . . . . . 6 ((𝜑𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
7166, 70mulcld 10664 . . . . 5 ((𝜑𝐴 ≠ 0) → (𝐵 · (log‘𝐴)) ∈ ℂ)
72 absef 15553 . . . . 5 ((𝐵 · (log‘𝐴)) ∈ ℂ → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
7371, 72syl 17 . . . 4 ((𝜑𝐴 ≠ 0) → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
7466recld 14556 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (ℜ‘𝐵) ∈ ℝ)
7570recld 14556 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) ∈ ℝ)
7674, 75remulcld 10674 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℝ)
7776recnd 10672 . . . . . 6 ((𝜑𝐴 ≠ 0) → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℂ)
7866imcld 14557 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (ℑ‘𝐵) ∈ ℝ)
7970imcld 14557 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℝ)
8079renegcld 11070 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → -(ℑ‘(log‘𝐴)) ∈ ℝ)
8178, 80remulcld 10674 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℝ)
8281recnd 10672 . . . . . 6 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℂ)
83 efadd 15450 . . . . . 6 ((((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℂ ∧ ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℂ) → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
8477, 82, 83syl2anc 586 . . . . 5 ((𝜑𝐴 ≠ 0) → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
8578, 79remulcld 10674 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · (ℑ‘(log‘𝐴))) ∈ ℝ)
8685recnd 10672 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · (ℑ‘(log‘𝐴))) ∈ ℂ)
8777, 86negsubd 11006 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + -((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) − ((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
8878recnd 10672 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (ℑ‘𝐵) ∈ ℂ)
8979recnd 10672 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℂ)
9088, 89mulneg2d 11097 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) = -((ℑ‘𝐵) · (ℑ‘(log‘𝐴))))
9190oveq2d 7175 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + -((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
9266, 70remuld 14580 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (ℜ‘(𝐵 · (log‘𝐴))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) − ((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
9387, 91, 923eqtr4d 2869 . . . . . 6 ((𝜑𝐴 ≠ 0) → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = (ℜ‘(𝐵 · (log‘𝐴))))
9493fveq2d 6677 . . . . 5 ((𝜑𝐴 ≠ 0) → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
95 relog 25183 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) = (log‘(abs‘𝐴)))
9643, 95sylan 582 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) = (log‘(abs‘𝐴)))
9796oveq2d 7175 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) = ((ℜ‘𝐵) · (log‘(abs‘𝐴))))
9897fveq2d 6677 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) = (exp‘((ℜ‘𝐵) · (log‘(abs‘𝐴)))))
9944recnd 10672 . . . . . . . . 9 (𝜑 → (abs‘𝐴) ∈ ℂ)
10099adantr 483 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ)
10143abs00ad 14653 . . . . . . . . . 10 (𝜑 → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
102101necon3bid 3063 . . . . . . . . 9 (𝜑 → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
103102biimpar 480 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) ≠ 0)
10474recnd 10672 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (ℜ‘𝐵) ∈ ℂ)
105100, 103, 104cxpefd 25298 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) = (exp‘((ℜ‘𝐵) · (log‘(abs‘𝐴)))))
10698, 105eqtr4d 2862 . . . . . 6 ((𝜑𝐴 ≠ 0) → (exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) = ((abs‘𝐴)↑𝑐(ℜ‘𝐵)))
107106oveq1d 7174 . . . . 5 ((𝜑𝐴 ≠ 0) → ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
10884, 94, 1073eqtr3d 2867 . . . 4 ((𝜑𝐴 ≠ 0) → (exp‘(ℜ‘(𝐵 · (log‘𝐴)))) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
10968, 73, 1083eqtrd 2863 . . 3 ((𝜑𝐴 ≠ 0) → (abs‘(𝐴𝑐𝐵)) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
11064abscld 14799 . . . . . 6 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
11164absge0d 14807 . . . . . 6 ((𝜑𝐴 ≠ 0) → 0 ≤ (abs‘𝐴))
112110, 111, 74recxpcld 25309 . . . . 5 ((𝜑𝐴 ≠ 0) → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ∈ ℝ)
11381reefcld 15444 . . . . 5 ((𝜑𝐴 ≠ 0) → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ∈ ℝ)
114112, 113remulcld 10674 . . . 4 ((𝜑𝐴 ≠ 0) → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ∈ ℝ)
11549adantr 483 . . . . 5 ((𝜑𝐴 ≠ 0) → (𝑀𝑐(ℜ‘𝐵)) ∈ ℝ)
116115, 113remulcld 10674 . . . 4 ((𝜑𝐴 ≠ 0) → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ∈ ℝ)
11751, 53, 54sylancl 588 . . . . . . 7 (𝜑 → ((abs‘𝐵) · π) ∈ ℝ)
118117reefcld 15444 . . . . . 6 (𝜑 → (exp‘((abs‘𝐵) · π)) ∈ ℝ)
119118adantr 483 . . . . 5 ((𝜑𝐴 ≠ 0) → (exp‘((abs‘𝐵) · π)) ∈ ℝ)
120115, 119remulcld 10674 . . . 4 ((𝜑𝐴 ≠ 0) → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))) ∈ ℝ)
12181rpefcld 15461 . . . . . 6 ((𝜑𝐴 ≠ 0) → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ∈ ℝ+)
122121rpge0d 12438 . . . . 5 ((𝜑𝐴 ≠ 0) → 0 ≤ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))))
12316adantr 483 . . . . . 6 ((𝜑𝐴 ≠ 0) → 𝑀 ∈ ℝ)
124 abscxpbnd.3 . . . . . . 7 (𝜑 → 0 ≤ (ℜ‘𝐵))
125124adantr 483 . . . . . 6 ((𝜑𝐴 ≠ 0) → 0 ≤ (ℜ‘𝐵))
12646adantr 483 . . . . . 6 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) ≤ 𝑀)
127110, 111, 123, 74, 125, 126cxple2ad 25311 . . . . 5 ((𝜑𝐴 ≠ 0) → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ≤ (𝑀𝑐(ℜ‘𝐵)))
128112, 115, 113, 122, 127lemul1ad 11582 . . . 4 ((𝜑𝐴 ≠ 0) → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
12957adantr 483 . . . . 5 ((𝜑𝐴 ≠ 0) → 0 ≤ (𝑀𝑐(ℜ‘𝐵)))
13088abscld 14799 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (abs‘(ℑ‘𝐵)) ∈ ℝ)
13180recnd 10672 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → -(ℑ‘(log‘𝐴)) ∈ ℂ)
132131abscld 14799 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (abs‘-(ℑ‘(log‘𝐴))) ∈ ℝ)
133130, 132remulcld 10674 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ∈ ℝ)
134117adantr 483 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((abs‘𝐵) · π) ∈ ℝ)
13581leabsd 14777 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ (abs‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))))
13688, 131absmuld 14817 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (abs‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))))
137135, 136breqtrd 5095 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))))
13866abscld 14799 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (abs‘𝐵) ∈ ℝ)
139138, 132remulcld 10674 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))) ∈ ℝ)
140131absge0d 14807 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → 0 ≤ (abs‘-(ℑ‘(log‘𝐴))))
141 absimle 14672 . . . . . . . . . 10 (𝐵 ∈ ℂ → (abs‘(ℑ‘𝐵)) ≤ (abs‘𝐵))
14266, 141syl 17 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (abs‘(ℑ‘𝐵)) ≤ (abs‘𝐵))
143130, 138, 132, 140, 142lemul1ad 11582 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))))
14453a1i 11 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → π ∈ ℝ)
14566absge0d 14807 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → 0 ≤ (abs‘𝐵))
14689absnegd 14812 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → (abs‘-(ℑ‘(log‘𝐴))) = (abs‘(ℑ‘(log‘𝐴))))
147 logimcl 25156 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
14843, 147sylan 582 . . . . . . . . . . . . 13 ((𝜑𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
149148simpld 497 . . . . . . . . . . . 12 ((𝜑𝐴 ≠ 0) → -π < (ℑ‘(log‘𝐴)))
15053renegcli 10950 . . . . . . . . . . . . 13 -π ∈ ℝ
151 ltle 10732 . . . . . . . . . . . . 13 ((-π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
152150, 79, 151sylancr 589 . . . . . . . . . . . 12 ((𝜑𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
153149, 152mpd 15 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → -π ≤ (ℑ‘(log‘𝐴)))
154148simprd 498 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ≤ π)
155 absle 14678 . . . . . . . . . . . 12 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
15679, 53, 155sylancl 588 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
157153, 154, 156mpbir2and 711 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → (abs‘(ℑ‘(log‘𝐴))) ≤ π)
158146, 157eqbrtrd 5091 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (abs‘-(ℑ‘(log‘𝐴))) ≤ π)
159132, 144, 138, 145, 158lemul2ad 11583 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · π))
160133, 139, 134, 143, 159letrd 10800 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · π))
16181, 133, 134, 137, 160letrd 10800 . . . . . 6 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π))
162 efle 15474 . . . . . . 7 ((((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℝ ∧ ((abs‘𝐵) · π) ∈ ℝ) → (((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π) ↔ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π))))
16381, 134, 162syl2anc 586 . . . . . 6 ((𝜑𝐴 ≠ 0) → (((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π) ↔ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π))))
164161, 163mpbid 234 . . . . 5 ((𝜑𝐴 ≠ 0) → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π)))
165113, 119, 115, 129, 164lemul2ad 11583 . . . 4 ((𝜑𝐴 ≠ 0) → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
166114, 116, 120, 128, 165letrd 10800 . . 3 ((𝜑𝐴 ≠ 0) → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
167109, 166eqbrtrd 5091 . 2 ((𝜑𝐴 ≠ 0) → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
16863, 167pm2.61dane 3107 1 (𝜑 → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wne 3019   class class class wbr 5069  cfv 6358  (class class class)co 7159  cc 10538  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545   < clt 10678  cle 10679  cmin 10873  -cneg 10874  cre 14459  cim 14460  abscabs 14596  expce 15418  πcpi 15423  logclog 25141  𝑐ccxp 25142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14429  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-limsup 14831  df-clim 14848  df-rlim 14849  df-sum 15046  df-ef 15424  df-sin 15426  df-cos 15427  df-pi 15429  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-fbas 20545  df-fg 20546  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lp 21747  df-perf 21748  df-cn 21838  df-cnp 21839  df-haus 21926  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-xms 22933  df-ms 22934  df-tms 22935  df-cncf 23489  df-limc 24467  df-dv 24468  df-log 25143  df-cxp 25144
This theorem is referenced by:  o1cxp  25555
  Copyright terms: Public domain W3C validator