MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neifil Structured version   Visualization version   GIF version

Theorem neifil 22061
Description: The neighborhoods of a nonempty set is a filter. Example 2 of [BourbakiTop1] p. I.36. (Contributed by FL, 18-Sep-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
neifil ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → ((nei‘𝐽)‘𝑆) ∈ (Fil‘𝑋))

Proof of Theorem neifil
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 toponuni 21096 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
21adantr 474 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → 𝑋 = 𝐽)
3 topontop 21095 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
43adantr 474 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → 𝐽 ∈ Top)
5 simpr 479 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → 𝑆𝑋)
65, 2sseqtrd 3866 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → 𝑆 𝐽)
7 eqid 2825 . . . . . . . . 9 𝐽 = 𝐽
87neiuni 21304 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → 𝐽 = ((nei‘𝐽)‘𝑆))
94, 6, 8syl2anc 579 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → 𝐽 = ((nei‘𝐽)‘𝑆))
102, 9eqtrd 2861 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → 𝑋 = ((nei‘𝐽)‘𝑆))
11 eqimss2 3883 . . . . . 6 (𝑋 = ((nei‘𝐽)‘𝑆) → ((nei‘𝐽)‘𝑆) ⊆ 𝑋)
1210, 11syl 17 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → ((nei‘𝐽)‘𝑆) ⊆ 𝑋)
13 sspwuni 4834 . . . . 5 (((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋 ((nei‘𝐽)‘𝑆) ⊆ 𝑋)
1412, 13sylibr 226 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → ((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋)
15143adant3 1166 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → ((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋)
16 0nnei 21294 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 ≠ ∅) → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆))
173, 16sylan 575 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ≠ ∅) → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆))
18173adant2 1165 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆))
197tpnei 21303 . . . . . . 7 (𝐽 ∈ Top → (𝑆 𝐽 𝐽 ∈ ((nei‘𝐽)‘𝑆)))
2019biimpa 470 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → 𝐽 ∈ ((nei‘𝐽)‘𝑆))
214, 6, 20syl2anc 579 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → 𝐽 ∈ ((nei‘𝐽)‘𝑆))
222, 21eqeltrd 2906 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → 𝑋 ∈ ((nei‘𝐽)‘𝑆))
23223adant3 1166 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝑋 ∈ ((nei‘𝐽)‘𝑆))
2415, 18, 233jca 1162 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → (((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑋 ∈ ((nei‘𝐽)‘𝑆)))
25 elpwi 4390 . . . . 5 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
264ad2antrr 717 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ (𝑦 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦𝑥)) → 𝐽 ∈ Top)
27 simprl 787 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ (𝑦 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦𝑥)) → 𝑦 ∈ ((nei‘𝐽)‘𝑆))
28 simprr 789 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ (𝑦 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦𝑥)) → 𝑦𝑥)
29 simplr 785 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ (𝑦 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦𝑥)) → 𝑥𝑋)
302ad2antrr 717 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ (𝑦 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦𝑥)) → 𝑋 = 𝐽)
3129, 30sseqtrd 3866 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ (𝑦 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦𝑥)) → 𝑥 𝐽)
327ssnei2 21298 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑦𝑥𝑥 𝐽)) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
3326, 27, 28, 31, 32syl22anc 872 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ (𝑦 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦𝑥)) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
3433rexlimdvaa 3241 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → (∃𝑦 ∈ ((nei‘𝐽)‘𝑆)𝑦𝑥𝑥 ∈ ((nei‘𝐽)‘𝑆)))
3525, 34sylan2 586 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → (∃𝑦 ∈ ((nei‘𝐽)‘𝑆)𝑦𝑥𝑥 ∈ ((nei‘𝐽)‘𝑆)))
3635ralrimiva 3175 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → ∀𝑥 ∈ 𝒫 𝑋(∃𝑦 ∈ ((nei‘𝐽)‘𝑆)𝑦𝑥𝑥 ∈ ((nei‘𝐽)‘𝑆)))
37363adant3 1166 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → ∀𝑥 ∈ 𝒫 𝑋(∃𝑦 ∈ ((nei‘𝐽)‘𝑆)𝑦𝑥𝑥 ∈ ((nei‘𝐽)‘𝑆)))
38 innei 21307 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) → (𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆))
39383expib 1156 . . . . 5 (𝐽 ∈ Top → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) → (𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆)))
403, 39syl 17 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) → (𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆)))
41403ad2ant1 1167 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) → (𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆)))
4241ralrimivv 3179 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → ∀𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦 ∈ ((nei‘𝐽)‘𝑆)(𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆))
43 isfil2 22037 . 2 (((nei‘𝐽)‘𝑆) ∈ (Fil‘𝑋) ↔ ((((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑋 ∈ ((nei‘𝐽)‘𝑆)) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦 ∈ ((nei‘𝐽)‘𝑆)𝑦𝑥𝑥 ∈ ((nei‘𝐽)‘𝑆)) ∧ ∀𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦 ∈ ((nei‘𝐽)‘𝑆)(𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆)))
4424, 37, 42, 43syl3anbrc 1447 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → ((nei‘𝐽)‘𝑆) ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386  w3a 1111   = wceq 1656  wcel 2164  wne 2999  wral 3117  wrex 3118  cin 3797  wss 3798  c0 4146  𝒫 cpw 4380   cuni 4660  cfv 6127  Topctop 21075  TopOnctopon 21092  neicnei 21279  Filcfil 22026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-fbas 20110  df-top 21076  df-topon 21093  df-nei 21280  df-fil 22027
This theorem is referenced by:  trnei  22073  neiflim  22155  hausflim  22162  flimcf  22163  flimclslem  22165  cnpflf2  22181  cnpflf  22182  fclsfnflim  22208  neipcfilu  22477
  Copyright terms: Public domain W3C validator