MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neifil Structured version   Visualization version   GIF version

Theorem neifil 22939
Description: The neighborhoods of a nonempty set is a filter. Example 2 of [BourbakiTop1] p. I.36. (Contributed by FL, 18-Sep-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
neifil ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → ((nei‘𝐽)‘𝑆) ∈ (Fil‘𝑋))

Proof of Theorem neifil
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 toponuni 21971 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
21adantr 480 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → 𝑋 = 𝐽)
3 topontop 21970 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
43adantr 480 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → 𝐽 ∈ Top)
5 simpr 484 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → 𝑆𝑋)
65, 2sseqtrd 3957 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → 𝑆 𝐽)
7 eqid 2738 . . . . . . . . 9 𝐽 = 𝐽
87neiuni 22181 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → 𝐽 = ((nei‘𝐽)‘𝑆))
94, 6, 8syl2anc 583 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → 𝐽 = ((nei‘𝐽)‘𝑆))
102, 9eqtrd 2778 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → 𝑋 = ((nei‘𝐽)‘𝑆))
11 eqimss2 3974 . . . . . 6 (𝑋 = ((nei‘𝐽)‘𝑆) → ((nei‘𝐽)‘𝑆) ⊆ 𝑋)
1210, 11syl 17 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → ((nei‘𝐽)‘𝑆) ⊆ 𝑋)
13 sspwuni 5025 . . . . 5 (((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋 ((nei‘𝐽)‘𝑆) ⊆ 𝑋)
1412, 13sylibr 233 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → ((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋)
15143adant3 1130 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → ((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋)
16 0nnei 22171 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 ≠ ∅) → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆))
173, 16sylan 579 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ≠ ∅) → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆))
18173adant2 1129 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆))
197tpnei 22180 . . . . . . 7 (𝐽 ∈ Top → (𝑆 𝐽 𝐽 ∈ ((nei‘𝐽)‘𝑆)))
2019biimpa 476 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → 𝐽 ∈ ((nei‘𝐽)‘𝑆))
214, 6, 20syl2anc 583 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → 𝐽 ∈ ((nei‘𝐽)‘𝑆))
222, 21eqeltrd 2839 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → 𝑋 ∈ ((nei‘𝐽)‘𝑆))
23223adant3 1130 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝑋 ∈ ((nei‘𝐽)‘𝑆))
2415, 18, 233jca 1126 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → (((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑋 ∈ ((nei‘𝐽)‘𝑆)))
25 elpwi 4539 . . . . 5 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
264ad2antrr 722 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ (𝑦 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦𝑥)) → 𝐽 ∈ Top)
27 simprl 767 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ (𝑦 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦𝑥)) → 𝑦 ∈ ((nei‘𝐽)‘𝑆))
28 simprr 769 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ (𝑦 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦𝑥)) → 𝑦𝑥)
29 simplr 765 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ (𝑦 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦𝑥)) → 𝑥𝑋)
302ad2antrr 722 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ (𝑦 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦𝑥)) → 𝑋 = 𝐽)
3129, 30sseqtrd 3957 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ (𝑦 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦𝑥)) → 𝑥 𝐽)
327ssnei2 22175 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑦𝑥𝑥 𝐽)) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
3326, 27, 28, 31, 32syl22anc 835 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ (𝑦 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦𝑥)) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
3433rexlimdvaa 3213 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → (∃𝑦 ∈ ((nei‘𝐽)‘𝑆)𝑦𝑥𝑥 ∈ ((nei‘𝐽)‘𝑆)))
3525, 34sylan2 592 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → (∃𝑦 ∈ ((nei‘𝐽)‘𝑆)𝑦𝑥𝑥 ∈ ((nei‘𝐽)‘𝑆)))
3635ralrimiva 3107 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → ∀𝑥 ∈ 𝒫 𝑋(∃𝑦 ∈ ((nei‘𝐽)‘𝑆)𝑦𝑥𝑥 ∈ ((nei‘𝐽)‘𝑆)))
37363adant3 1130 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → ∀𝑥 ∈ 𝒫 𝑋(∃𝑦 ∈ ((nei‘𝐽)‘𝑆)𝑦𝑥𝑥 ∈ ((nei‘𝐽)‘𝑆)))
38 innei 22184 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) → (𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆))
39383expib 1120 . . . . 5 (𝐽 ∈ Top → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) → (𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆)))
403, 39syl 17 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) → (𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆)))
41403ad2ant1 1131 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) → (𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆)))
4241ralrimivv 3113 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → ∀𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦 ∈ ((nei‘𝐽)‘𝑆)(𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆))
43 isfil2 22915 . 2 (((nei‘𝐽)‘𝑆) ∈ (Fil‘𝑋) ↔ ((((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑋 ∈ ((nei‘𝐽)‘𝑆)) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦 ∈ ((nei‘𝐽)‘𝑆)𝑦𝑥𝑥 ∈ ((nei‘𝐽)‘𝑆)) ∧ ∀𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦 ∈ ((nei‘𝐽)‘𝑆)(𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆)))
4424, 37, 42, 43syl3anbrc 1341 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → ((nei‘𝐽)‘𝑆) ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530   cuni 4836  cfv 6418  Topctop 21950  TopOnctopon 21967  neicnei 22156  Filcfil 22904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-fbas 20507  df-top 21951  df-topon 21968  df-nei 22157  df-fil 22905
This theorem is referenced by:  trnei  22951  neiflim  23033  hausflim  23040  flimcf  23041  flimclslem  23043  cnpflf2  23059  cnpflf  23060  fclsfnflim  23086  neipcfilu  23356
  Copyright terms: Public domain W3C validator