Step | Hyp | Ref
| Expression |
1 | | toponuni 21971 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
2 | 1 | adantr 480 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝑋 = ∪ 𝐽) |
3 | | topontop 21970 |
. . . . . . . . 9
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
4 | 3 | adantr 480 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐽 ∈ Top) |
5 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ 𝑋) |
6 | 5, 2 | sseqtrd 3957 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ ∪ 𝐽) |
7 | | eqid 2738 |
. . . . . . . . 9
⊢ ∪ 𝐽 =
∪ 𝐽 |
8 | 7 | neiuni 22181 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
→ ∪ 𝐽 = ∪
((nei‘𝐽)‘𝑆)) |
9 | 4, 6, 8 | syl2anc 583 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ∪ 𝐽 = ∪
((nei‘𝐽)‘𝑆)) |
10 | 2, 9 | eqtrd 2778 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝑋 = ∪
((nei‘𝐽)‘𝑆)) |
11 | | eqimss2 3974 |
. . . . . 6
⊢ (𝑋 = ∪
((nei‘𝐽)‘𝑆) → ∪ ((nei‘𝐽)‘𝑆) ⊆ 𝑋) |
12 | 10, 11 | syl 17 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ∪
((nei‘𝐽)‘𝑆) ⊆ 𝑋) |
13 | | sspwuni 5025 |
. . . . 5
⊢
(((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋 ↔ ∪
((nei‘𝐽)‘𝑆) ⊆ 𝑋) |
14 | 12, 13 | sylibr 233 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋) |
15 | 14 | 3adant3 1130 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → ((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋) |
16 | | 0nnei 22171 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑆 ≠ ∅) → ¬
∅ ∈ ((nei‘𝐽)‘𝑆)) |
17 | 3, 16 | sylan 579 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ≠ ∅) → ¬ ∅ ∈
((nei‘𝐽)‘𝑆)) |
18 | 17 | 3adant2 1129 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → ¬ ∅ ∈
((nei‘𝐽)‘𝑆)) |
19 | 7 | tpnei 22180 |
. . . . . . 7
⊢ (𝐽 ∈ Top → (𝑆 ⊆ ∪ 𝐽
↔ ∪ 𝐽 ∈ ((nei‘𝐽)‘𝑆))) |
20 | 19 | biimpa 476 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
→ ∪ 𝐽 ∈ ((nei‘𝐽)‘𝑆)) |
21 | 4, 6, 20 | syl2anc 583 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ∪ 𝐽 ∈ ((nei‘𝐽)‘𝑆)) |
22 | 2, 21 | eqeltrd 2839 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝑋 ∈ ((nei‘𝐽)‘𝑆)) |
23 | 22 | 3adant3 1130 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝑋 ∈ ((nei‘𝐽)‘𝑆)) |
24 | 15, 18, 23 | 3jca 1126 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → (((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈
((nei‘𝐽)‘𝑆) ∧ 𝑋 ∈ ((nei‘𝐽)‘𝑆))) |
25 | | elpwi 4539 |
. . . . 5
⊢ (𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋) |
26 | 4 | ad2antrr 722 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ⊆ 𝑋) ∧ (𝑦 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ⊆ 𝑥)) → 𝐽 ∈ Top) |
27 | | simprl 767 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ⊆ 𝑋) ∧ (𝑦 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ∈ ((nei‘𝐽)‘𝑆)) |
28 | | simprr 769 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ⊆ 𝑋) ∧ (𝑦 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ⊆ 𝑥) |
29 | | simplr 765 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ⊆ 𝑋) ∧ (𝑦 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ⊆ 𝑥)) → 𝑥 ⊆ 𝑋) |
30 | 2 | ad2antrr 722 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ⊆ 𝑋) ∧ (𝑦 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ⊆ 𝑥)) → 𝑋 = ∪ 𝐽) |
31 | 29, 30 | sseqtrd 3957 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ⊆ 𝑋) ∧ (𝑦 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ⊆ 𝑥)) → 𝑥 ⊆ ∪ 𝐽) |
32 | 7 | ssnei2 22175 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑦 ⊆ 𝑥 ∧ 𝑥 ⊆ ∪ 𝐽)) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)) |
33 | 26, 27, 28, 31, 32 | syl22anc 835 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ⊆ 𝑋) ∧ (𝑦 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ⊆ 𝑥)) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)) |
34 | 33 | rexlimdvaa 3213 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ⊆ 𝑋) → (∃𝑦 ∈ ((nei‘𝐽)‘𝑆)𝑦 ⊆ 𝑥 → 𝑥 ∈ ((nei‘𝐽)‘𝑆))) |
35 | 25, 34 | sylan2 592 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → (∃𝑦 ∈ ((nei‘𝐽)‘𝑆)𝑦 ⊆ 𝑥 → 𝑥 ∈ ((nei‘𝐽)‘𝑆))) |
36 | 35 | ralrimiva 3107 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ∀𝑥 ∈ 𝒫 𝑋(∃𝑦 ∈ ((nei‘𝐽)‘𝑆)𝑦 ⊆ 𝑥 → 𝑥 ∈ ((nei‘𝐽)‘𝑆))) |
37 | 36 | 3adant3 1130 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → ∀𝑥 ∈ 𝒫 𝑋(∃𝑦 ∈ ((nei‘𝐽)‘𝑆)𝑦 ⊆ 𝑥 → 𝑥 ∈ ((nei‘𝐽)‘𝑆))) |
38 | | innei 22184 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) → (𝑥 ∩ 𝑦) ∈ ((nei‘𝐽)‘𝑆)) |
39 | 38 | 3expib 1120 |
. . . . 5
⊢ (𝐽 ∈ Top → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) → (𝑥 ∩ 𝑦) ∈ ((nei‘𝐽)‘𝑆))) |
40 | 3, 39 | syl 17 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) → (𝑥 ∩ 𝑦) ∈ ((nei‘𝐽)‘𝑆))) |
41 | 40 | 3ad2ant1 1131 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) → (𝑥 ∩ 𝑦) ∈ ((nei‘𝐽)‘𝑆))) |
42 | 41 | ralrimivv 3113 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → ∀𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦 ∈ ((nei‘𝐽)‘𝑆)(𝑥 ∩ 𝑦) ∈ ((nei‘𝐽)‘𝑆)) |
43 | | isfil2 22915 |
. 2
⊢
(((nei‘𝐽)‘𝑆) ∈ (Fil‘𝑋) ↔ ((((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈
((nei‘𝐽)‘𝑆) ∧ 𝑋 ∈ ((nei‘𝐽)‘𝑆)) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦 ∈ ((nei‘𝐽)‘𝑆)𝑦 ⊆ 𝑥 → 𝑥 ∈ ((nei‘𝐽)‘𝑆)) ∧ ∀𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦 ∈ ((nei‘𝐽)‘𝑆)(𝑥 ∩ 𝑦) ∈ ((nei‘𝐽)‘𝑆))) |
44 | 24, 37, 42, 43 | syl3anbrc 1341 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → ((nei‘𝐽)‘𝑆) ∈ (Fil‘𝑋)) |