MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neifil Structured version   Visualization version   GIF version

Theorem neifil 22482
Description: The neighborhoods of a nonempty set is a filter. Example 2 of [BourbakiTop1] p. I.36. (Contributed by FL, 18-Sep-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
neifil ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → ((nei‘𝐽)‘𝑆) ∈ (Fil‘𝑋))

Proof of Theorem neifil
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 toponuni 21516 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
21adantr 483 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → 𝑋 = 𝐽)
3 topontop 21515 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
43adantr 483 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → 𝐽 ∈ Top)
5 simpr 487 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → 𝑆𝑋)
65, 2sseqtrd 4006 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → 𝑆 𝐽)
7 eqid 2821 . . . . . . . . 9 𝐽 = 𝐽
87neiuni 21724 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → 𝐽 = ((nei‘𝐽)‘𝑆))
94, 6, 8syl2anc 586 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → 𝐽 = ((nei‘𝐽)‘𝑆))
102, 9eqtrd 2856 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → 𝑋 = ((nei‘𝐽)‘𝑆))
11 eqimss2 4023 . . . . . 6 (𝑋 = ((nei‘𝐽)‘𝑆) → ((nei‘𝐽)‘𝑆) ⊆ 𝑋)
1210, 11syl 17 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → ((nei‘𝐽)‘𝑆) ⊆ 𝑋)
13 sspwuni 5014 . . . . 5 (((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋 ((nei‘𝐽)‘𝑆) ⊆ 𝑋)
1412, 13sylibr 236 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → ((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋)
15143adant3 1128 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → ((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋)
16 0nnei 21714 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 ≠ ∅) → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆))
173, 16sylan 582 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ≠ ∅) → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆))
18173adant2 1127 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆))
197tpnei 21723 . . . . . . 7 (𝐽 ∈ Top → (𝑆 𝐽 𝐽 ∈ ((nei‘𝐽)‘𝑆)))
2019biimpa 479 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → 𝐽 ∈ ((nei‘𝐽)‘𝑆))
214, 6, 20syl2anc 586 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → 𝐽 ∈ ((nei‘𝐽)‘𝑆))
222, 21eqeltrd 2913 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → 𝑋 ∈ ((nei‘𝐽)‘𝑆))
23223adant3 1128 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝑋 ∈ ((nei‘𝐽)‘𝑆))
2415, 18, 233jca 1124 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → (((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑋 ∈ ((nei‘𝐽)‘𝑆)))
25 elpwi 4550 . . . . 5 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
264ad2antrr 724 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ (𝑦 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦𝑥)) → 𝐽 ∈ Top)
27 simprl 769 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ (𝑦 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦𝑥)) → 𝑦 ∈ ((nei‘𝐽)‘𝑆))
28 simprr 771 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ (𝑦 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦𝑥)) → 𝑦𝑥)
29 simplr 767 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ (𝑦 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦𝑥)) → 𝑥𝑋)
302ad2antrr 724 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ (𝑦 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦𝑥)) → 𝑋 = 𝐽)
3129, 30sseqtrd 4006 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ (𝑦 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦𝑥)) → 𝑥 𝐽)
327ssnei2 21718 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑦𝑥𝑥 𝐽)) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
3326, 27, 28, 31, 32syl22anc 836 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ (𝑦 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦𝑥)) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
3433rexlimdvaa 3285 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → (∃𝑦 ∈ ((nei‘𝐽)‘𝑆)𝑦𝑥𝑥 ∈ ((nei‘𝐽)‘𝑆)))
3525, 34sylan2 594 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → (∃𝑦 ∈ ((nei‘𝐽)‘𝑆)𝑦𝑥𝑥 ∈ ((nei‘𝐽)‘𝑆)))
3635ralrimiva 3182 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → ∀𝑥 ∈ 𝒫 𝑋(∃𝑦 ∈ ((nei‘𝐽)‘𝑆)𝑦𝑥𝑥 ∈ ((nei‘𝐽)‘𝑆)))
37363adant3 1128 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → ∀𝑥 ∈ 𝒫 𝑋(∃𝑦 ∈ ((nei‘𝐽)‘𝑆)𝑦𝑥𝑥 ∈ ((nei‘𝐽)‘𝑆)))
38 innei 21727 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) → (𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆))
39383expib 1118 . . . . 5 (𝐽 ∈ Top → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) → (𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆)))
403, 39syl 17 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) → (𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆)))
41403ad2ant1 1129 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) → (𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆)))
4241ralrimivv 3190 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → ∀𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦 ∈ ((nei‘𝐽)‘𝑆)(𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆))
43 isfil2 22458 . 2 (((nei‘𝐽)‘𝑆) ∈ (Fil‘𝑋) ↔ ((((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑋 ∈ ((nei‘𝐽)‘𝑆)) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦 ∈ ((nei‘𝐽)‘𝑆)𝑦𝑥𝑥 ∈ ((nei‘𝐽)‘𝑆)) ∧ ∀𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦 ∈ ((nei‘𝐽)‘𝑆)(𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆)))
4424, 37, 42, 43syl3anbrc 1339 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → ((nei‘𝐽)‘𝑆) ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  cin 3934  wss 3935  c0 4290  𝒫 cpw 4538   cuni 4831  cfv 6349  Topctop 21495  TopOnctopon 21512  neicnei 21699  Filcfil 22447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-fbas 20536  df-top 21496  df-topon 21513  df-nei 21700  df-fil 22448
This theorem is referenced by:  trnei  22494  neiflim  22576  hausflim  22583  flimcf  22584  flimclslem  22586  cnpflf2  22602  cnpflf  22603  fclsfnflim  22629  neipcfilu  22899
  Copyright terms: Public domain W3C validator