Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arymaptf1 Structured version   Visualization version   GIF version

Theorem 1arymaptf1 48492
Description: The mapping of unary (endo)functions is a one-to-one function into the set of endofunctions. (Contributed by AV, 19-May-2024.)
Hypothesis
Ref Expression
1arymaptfv.h 𝐻 = ( ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})))
Assertion
Ref Expression
1arymaptf1 (𝑋𝑉𝐻:(1-aryF 𝑋)–1-1→(𝑋m 𝑋))
Distinct variable groups:   𝑥,,𝑋   ,𝑉,𝑥
Allowed substitution hints:   𝐻(𝑥,)

Proof of Theorem 1arymaptf1
Dummy variables 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1arymaptfv.h . . 3 𝐻 = ( ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})))
211arymaptf 48491 . 2 (𝑋𝑉𝐻:(1-aryF 𝑋)⟶(𝑋m 𝑋))
311arymaptfv 48490 . . . . . 6 (𝑓 ∈ (1-aryF 𝑋) → (𝐻𝑓) = (𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩})))
43ad2antrl 728 . . . . 5 ((𝑋𝑉 ∧ (𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋))) → (𝐻𝑓) = (𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩})))
511arymaptfv 48490 . . . . . 6 (𝑔 ∈ (1-aryF 𝑋) → (𝐻𝑔) = (𝑥𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩})))
65ad2antll 729 . . . . 5 ((𝑋𝑉 ∧ (𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋))) → (𝐻𝑔) = (𝑥𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩})))
74, 6eqeq12d 2751 . . . 4 ((𝑋𝑉 ∧ (𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋))) → ((𝐻𝑓) = (𝐻𝑔) ↔ (𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩})) = (𝑥𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩}))))
8 fvex 6920 . . . . . . 7 (𝑓‘{⟨0, 𝑥⟩}) ∈ V
98rgenw 3063 . . . . . 6 𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) ∈ V
10 mpteqb 7035 . . . . . 6 (∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) ∈ V → ((𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩})) = (𝑥𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩})) ↔ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})))
119, 10mp1i 13 . . . . 5 ((𝑋𝑉 ∧ (𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋))) → ((𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩})) = (𝑥𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩})) ↔ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})))
12 1aryfvalel 48486 . . . . . . . 8 (𝑋𝑉 → (𝑓 ∈ (1-aryF 𝑋) ↔ 𝑓:(𝑋m {0})⟶𝑋))
13 1aryfvalel 48486 . . . . . . . 8 (𝑋𝑉 → (𝑔 ∈ (1-aryF 𝑋) ↔ 𝑔:(𝑋m {0})⟶𝑋))
1412, 13anbi12d 632 . . . . . . 7 (𝑋𝑉 → ((𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋)) ↔ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋)))
15 ffn 6737 . . . . . . . . . . 11 (𝑓:(𝑋m {0})⟶𝑋𝑓 Fn (𝑋m {0}))
1615adantr 480 . . . . . . . . . 10 ((𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) → 𝑓 Fn (𝑋m {0}))
17163ad2ant2 1133 . . . . . . . . 9 ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → 𝑓 Fn (𝑋m {0}))
18 ffn 6737 . . . . . . . . . . 11 (𝑔:(𝑋m {0})⟶𝑋𝑔 Fn (𝑋m {0}))
1918adantl 481 . . . . . . . . . 10 ((𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) → 𝑔 Fn (𝑋m {0}))
20193ad2ant2 1133 . . . . . . . . 9 ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → 𝑔 Fn (𝑋m {0}))
21 elmapi 8888 . . . . . . . . . . . 12 (𝑦 ∈ (𝑋m {0}) → 𝑦:{0}⟶𝑋)
22 c0ex 11253 . . . . . . . . . . . . 13 0 ∈ V
2322fsn2 7156 . . . . . . . . . . . 12 (𝑦:{0}⟶𝑋 ↔ ((𝑦‘0) ∈ 𝑋𝑦 = {⟨0, (𝑦‘0)⟩}))
2421, 23sylib 218 . . . . . . . . . . 11 (𝑦 ∈ (𝑋m {0}) → ((𝑦‘0) ∈ 𝑋𝑦 = {⟨0, (𝑦‘0)⟩}))
25 opeq2 4879 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑦‘0) → ⟨0, 𝑥⟩ = ⟨0, (𝑦‘0)⟩)
2625sneqd 4643 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑦‘0) → {⟨0, 𝑥⟩} = {⟨0, (𝑦‘0)⟩})
2726fveq2d 6911 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑦‘0) → (𝑓‘{⟨0, 𝑥⟩}) = (𝑓‘{⟨0, (𝑦‘0)⟩}))
2826fveq2d 6911 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑦‘0) → (𝑔‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩}))
2927, 28eqeq12d 2751 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦‘0) → ((𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩}) ↔ (𝑓‘{⟨0, (𝑦‘0)⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩})))
3029rspccv 3619 . . . . . . . . . . . . . . 15 (∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩}) → ((𝑦‘0) ∈ 𝑋 → (𝑓‘{⟨0, (𝑦‘0)⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩})))
31303ad2ant3 1134 . . . . . . . . . . . . . 14 ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → ((𝑦‘0) ∈ 𝑋 → (𝑓‘{⟨0, (𝑦‘0)⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩})))
3231com12 32 . . . . . . . . . . . . 13 ((𝑦‘0) ∈ 𝑋 → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → (𝑓‘{⟨0, (𝑦‘0)⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩})))
3332adantr 480 . . . . . . . . . . . 12 (((𝑦‘0) ∈ 𝑋𝑦 = {⟨0, (𝑦‘0)⟩}) → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → (𝑓‘{⟨0, (𝑦‘0)⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩})))
34 fveq2 6907 . . . . . . . . . . . . . 14 (𝑦 = {⟨0, (𝑦‘0)⟩} → (𝑓𝑦) = (𝑓‘{⟨0, (𝑦‘0)⟩}))
35 fveq2 6907 . . . . . . . . . . . . . 14 (𝑦 = {⟨0, (𝑦‘0)⟩} → (𝑔𝑦) = (𝑔‘{⟨0, (𝑦‘0)⟩}))
3634, 35eqeq12d 2751 . . . . . . . . . . . . 13 (𝑦 = {⟨0, (𝑦‘0)⟩} → ((𝑓𝑦) = (𝑔𝑦) ↔ (𝑓‘{⟨0, (𝑦‘0)⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩})))
3736adantl 481 . . . . . . . . . . . 12 (((𝑦‘0) ∈ 𝑋𝑦 = {⟨0, (𝑦‘0)⟩}) → ((𝑓𝑦) = (𝑔𝑦) ↔ (𝑓‘{⟨0, (𝑦‘0)⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩})))
3833, 37sylibrd 259 . . . . . . . . . . 11 (((𝑦‘0) ∈ 𝑋𝑦 = {⟨0, (𝑦‘0)⟩}) → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → (𝑓𝑦) = (𝑔𝑦)))
3924, 38syl 17 . . . . . . . . . 10 (𝑦 ∈ (𝑋m {0}) → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → (𝑓𝑦) = (𝑔𝑦)))
4039impcom 407 . . . . . . . . 9 (((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) ∧ 𝑦 ∈ (𝑋m {0})) → (𝑓𝑦) = (𝑔𝑦))
4117, 20, 40eqfnfvd 7054 . . . . . . . 8 ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → 𝑓 = 𝑔)
42413exp 1118 . . . . . . 7 (𝑋𝑉 → ((𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) → (∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩}) → 𝑓 = 𝑔)))
4314, 42sylbid 240 . . . . . 6 (𝑋𝑉 → ((𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋)) → (∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩}) → 𝑓 = 𝑔)))
4443imp 406 . . . . 5 ((𝑋𝑉 ∧ (𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋))) → (∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩}) → 𝑓 = 𝑔))
4511, 44sylbid 240 . . . 4 ((𝑋𝑉 ∧ (𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋))) → ((𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩})) = (𝑥𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩})) → 𝑓 = 𝑔))
467, 45sylbid 240 . . 3 ((𝑋𝑉 ∧ (𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋))) → ((𝐻𝑓) = (𝐻𝑔) → 𝑓 = 𝑔))
4746ralrimivva 3200 . 2 (𝑋𝑉 → ∀𝑓 ∈ (1-aryF 𝑋)∀𝑔 ∈ (1-aryF 𝑋)((𝐻𝑓) = (𝐻𝑔) → 𝑓 = 𝑔))
48 dff13 7275 . 2 (𝐻:(1-aryF 𝑋)–1-1→(𝑋m 𝑋) ↔ (𝐻:(1-aryF 𝑋)⟶(𝑋m 𝑋) ∧ ∀𝑓 ∈ (1-aryF 𝑋)∀𝑔 ∈ (1-aryF 𝑋)((𝐻𝑓) = (𝐻𝑔) → 𝑓 = 𝑔)))
492, 47, 48sylanbrc 583 1 (𝑋𝑉𝐻:(1-aryF 𝑋)–1-1→(𝑋m 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  {csn 4631  cop 4637  cmpt 5231   Fn wfn 6558  wf 6559  1-1wf1 6560  cfv 6563  (class class class)co 7431  m cmap 8865  0cc0 11153  1c1 11154  -aryF cnaryf 48476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-naryf 48477
This theorem is referenced by:  1arymaptf1o  48494
  Copyright terms: Public domain W3C validator