Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arymaptf1 Structured version   Visualization version   GIF version

Theorem 1arymaptf1 46718
Description: The mapping of unary (endo)functions is a one-to-one function into the set of endofunctions. (Contributed by AV, 19-May-2024.)
Hypothesis
Ref Expression
1arymaptfv.h 𝐻 = ( ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})))
Assertion
Ref Expression
1arymaptf1 (𝑋𝑉𝐻:(1-aryF 𝑋)–1-1→(𝑋m 𝑋))
Distinct variable groups:   𝑥,,𝑋   ,𝑉,𝑥
Allowed substitution hints:   𝐻(𝑥,)

Proof of Theorem 1arymaptf1
Dummy variables 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1arymaptfv.h . . 3 𝐻 = ( ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})))
211arymaptf 46717 . 2 (𝑋𝑉𝐻:(1-aryF 𝑋)⟶(𝑋m 𝑋))
311arymaptfv 46716 . . . . . 6 (𝑓 ∈ (1-aryF 𝑋) → (𝐻𝑓) = (𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩})))
43ad2antrl 726 . . . . 5 ((𝑋𝑉 ∧ (𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋))) → (𝐻𝑓) = (𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩})))
511arymaptfv 46716 . . . . . 6 (𝑔 ∈ (1-aryF 𝑋) → (𝐻𝑔) = (𝑥𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩})))
65ad2antll 727 . . . . 5 ((𝑋𝑉 ∧ (𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋))) → (𝐻𝑔) = (𝑥𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩})))
74, 6eqeq12d 2752 . . . 4 ((𝑋𝑉 ∧ (𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋))) → ((𝐻𝑓) = (𝐻𝑔) ↔ (𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩})) = (𝑥𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩}))))
8 fvex 6855 . . . . . . 7 (𝑓‘{⟨0, 𝑥⟩}) ∈ V
98rgenw 3068 . . . . . 6 𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) ∈ V
10 mpteqb 6967 . . . . . 6 (∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) ∈ V → ((𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩})) = (𝑥𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩})) ↔ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})))
119, 10mp1i 13 . . . . 5 ((𝑋𝑉 ∧ (𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋))) → ((𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩})) = (𝑥𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩})) ↔ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})))
12 1aryfvalel 46712 . . . . . . . 8 (𝑋𝑉 → (𝑓 ∈ (1-aryF 𝑋) ↔ 𝑓:(𝑋m {0})⟶𝑋))
13 1aryfvalel 46712 . . . . . . . 8 (𝑋𝑉 → (𝑔 ∈ (1-aryF 𝑋) ↔ 𝑔:(𝑋m {0})⟶𝑋))
1412, 13anbi12d 631 . . . . . . 7 (𝑋𝑉 → ((𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋)) ↔ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋)))
15 ffn 6668 . . . . . . . . . . 11 (𝑓:(𝑋m {0})⟶𝑋𝑓 Fn (𝑋m {0}))
1615adantr 481 . . . . . . . . . 10 ((𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) → 𝑓 Fn (𝑋m {0}))
17163ad2ant2 1134 . . . . . . . . 9 ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → 𝑓 Fn (𝑋m {0}))
18 ffn 6668 . . . . . . . . . . 11 (𝑔:(𝑋m {0})⟶𝑋𝑔 Fn (𝑋m {0}))
1918adantl 482 . . . . . . . . . 10 ((𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) → 𝑔 Fn (𝑋m {0}))
20193ad2ant2 1134 . . . . . . . . 9 ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → 𝑔 Fn (𝑋m {0}))
21 elmapi 8787 . . . . . . . . . . . 12 (𝑦 ∈ (𝑋m {0}) → 𝑦:{0}⟶𝑋)
22 c0ex 11149 . . . . . . . . . . . . 13 0 ∈ V
2322fsn2 7082 . . . . . . . . . . . 12 (𝑦:{0}⟶𝑋 ↔ ((𝑦‘0) ∈ 𝑋𝑦 = {⟨0, (𝑦‘0)⟩}))
2421, 23sylib 217 . . . . . . . . . . 11 (𝑦 ∈ (𝑋m {0}) → ((𝑦‘0) ∈ 𝑋𝑦 = {⟨0, (𝑦‘0)⟩}))
25 opeq2 4831 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑦‘0) → ⟨0, 𝑥⟩ = ⟨0, (𝑦‘0)⟩)
2625sneqd 4598 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑦‘0) → {⟨0, 𝑥⟩} = {⟨0, (𝑦‘0)⟩})
2726fveq2d 6846 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑦‘0) → (𝑓‘{⟨0, 𝑥⟩}) = (𝑓‘{⟨0, (𝑦‘0)⟩}))
2826fveq2d 6846 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑦‘0) → (𝑔‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩}))
2927, 28eqeq12d 2752 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦‘0) → ((𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩}) ↔ (𝑓‘{⟨0, (𝑦‘0)⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩})))
3029rspccv 3578 . . . . . . . . . . . . . . 15 (∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩}) → ((𝑦‘0) ∈ 𝑋 → (𝑓‘{⟨0, (𝑦‘0)⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩})))
31303ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → ((𝑦‘0) ∈ 𝑋 → (𝑓‘{⟨0, (𝑦‘0)⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩})))
3231com12 32 . . . . . . . . . . . . 13 ((𝑦‘0) ∈ 𝑋 → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → (𝑓‘{⟨0, (𝑦‘0)⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩})))
3332adantr 481 . . . . . . . . . . . 12 (((𝑦‘0) ∈ 𝑋𝑦 = {⟨0, (𝑦‘0)⟩}) → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → (𝑓‘{⟨0, (𝑦‘0)⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩})))
34 fveq2 6842 . . . . . . . . . . . . . 14 (𝑦 = {⟨0, (𝑦‘0)⟩} → (𝑓𝑦) = (𝑓‘{⟨0, (𝑦‘0)⟩}))
35 fveq2 6842 . . . . . . . . . . . . . 14 (𝑦 = {⟨0, (𝑦‘0)⟩} → (𝑔𝑦) = (𝑔‘{⟨0, (𝑦‘0)⟩}))
3634, 35eqeq12d 2752 . . . . . . . . . . . . 13 (𝑦 = {⟨0, (𝑦‘0)⟩} → ((𝑓𝑦) = (𝑔𝑦) ↔ (𝑓‘{⟨0, (𝑦‘0)⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩})))
3736adantl 482 . . . . . . . . . . . 12 (((𝑦‘0) ∈ 𝑋𝑦 = {⟨0, (𝑦‘0)⟩}) → ((𝑓𝑦) = (𝑔𝑦) ↔ (𝑓‘{⟨0, (𝑦‘0)⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩})))
3833, 37sylibrd 258 . . . . . . . . . . 11 (((𝑦‘0) ∈ 𝑋𝑦 = {⟨0, (𝑦‘0)⟩}) → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → (𝑓𝑦) = (𝑔𝑦)))
3924, 38syl 17 . . . . . . . . . 10 (𝑦 ∈ (𝑋m {0}) → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → (𝑓𝑦) = (𝑔𝑦)))
4039impcom 408 . . . . . . . . 9 (((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) ∧ 𝑦 ∈ (𝑋m {0})) → (𝑓𝑦) = (𝑔𝑦))
4117, 20, 40eqfnfvd 6985 . . . . . . . 8 ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → 𝑓 = 𝑔)
42413exp 1119 . . . . . . 7 (𝑋𝑉 → ((𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) → (∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩}) → 𝑓 = 𝑔)))
4314, 42sylbid 239 . . . . . 6 (𝑋𝑉 → ((𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋)) → (∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩}) → 𝑓 = 𝑔)))
4443imp 407 . . . . 5 ((𝑋𝑉 ∧ (𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋))) → (∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩}) → 𝑓 = 𝑔))
4511, 44sylbid 239 . . . 4 ((𝑋𝑉 ∧ (𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋))) → ((𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩})) = (𝑥𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩})) → 𝑓 = 𝑔))
467, 45sylbid 239 . . 3 ((𝑋𝑉 ∧ (𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋))) → ((𝐻𝑓) = (𝐻𝑔) → 𝑓 = 𝑔))
4746ralrimivva 3197 . 2 (𝑋𝑉 → ∀𝑓 ∈ (1-aryF 𝑋)∀𝑔 ∈ (1-aryF 𝑋)((𝐻𝑓) = (𝐻𝑔) → 𝑓 = 𝑔))
48 dff13 7202 . 2 (𝐻:(1-aryF 𝑋)–1-1→(𝑋m 𝑋) ↔ (𝐻:(1-aryF 𝑋)⟶(𝑋m 𝑋) ∧ ∀𝑓 ∈ (1-aryF 𝑋)∀𝑔 ∈ (1-aryF 𝑋)((𝐻𝑓) = (𝐻𝑔) → 𝑓 = 𝑔)))
492, 47, 48sylanbrc 583 1 (𝑋𝑉𝐻:(1-aryF 𝑋)–1-1→(𝑋m 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  {csn 4586  cop 4592  cmpt 5188   Fn wfn 6491  wf 6492  1-1wf1 6493  cfv 6496  (class class class)co 7357  m cmap 8765  0cc0 11051  1c1 11052  -aryF cnaryf 46702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-naryf 46703
This theorem is referenced by:  1arymaptf1o  46720
  Copyright terms: Public domain W3C validator