Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arymaptf1 Structured version   Visualization version   GIF version

Theorem 1arymaptf1 45876
Description: The mapping of unary (endo)functions is a one-to-one function into the set of endofunctions. (Contributed by AV, 19-May-2024.)
Hypothesis
Ref Expression
1arymaptfv.h 𝐻 = ( ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})))
Assertion
Ref Expression
1arymaptf1 (𝑋𝑉𝐻:(1-aryF 𝑋)–1-1→(𝑋m 𝑋))
Distinct variable groups:   𝑥,,𝑋   ,𝑉,𝑥
Allowed substitution hints:   𝐻(𝑥,)

Proof of Theorem 1arymaptf1
Dummy variables 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1arymaptfv.h . . 3 𝐻 = ( ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})))
211arymaptf 45875 . 2 (𝑋𝑉𝐻:(1-aryF 𝑋)⟶(𝑋m 𝑋))
311arymaptfv 45874 . . . . . 6 (𝑓 ∈ (1-aryF 𝑋) → (𝐻𝑓) = (𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩})))
43ad2antrl 724 . . . . 5 ((𝑋𝑉 ∧ (𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋))) → (𝐻𝑓) = (𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩})))
511arymaptfv 45874 . . . . . 6 (𝑔 ∈ (1-aryF 𝑋) → (𝐻𝑔) = (𝑥𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩})))
65ad2antll 725 . . . . 5 ((𝑋𝑉 ∧ (𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋))) → (𝐻𝑔) = (𝑥𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩})))
74, 6eqeq12d 2754 . . . 4 ((𝑋𝑉 ∧ (𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋))) → ((𝐻𝑓) = (𝐻𝑔) ↔ (𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩})) = (𝑥𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩}))))
8 fvex 6769 . . . . . . 7 (𝑓‘{⟨0, 𝑥⟩}) ∈ V
98rgenw 3075 . . . . . 6 𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) ∈ V
10 mpteqb 6876 . . . . . 6 (∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) ∈ V → ((𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩})) = (𝑥𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩})) ↔ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})))
119, 10mp1i 13 . . . . 5 ((𝑋𝑉 ∧ (𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋))) → ((𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩})) = (𝑥𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩})) ↔ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})))
12 1aryfvalel 45870 . . . . . . . 8 (𝑋𝑉 → (𝑓 ∈ (1-aryF 𝑋) ↔ 𝑓:(𝑋m {0})⟶𝑋))
13 1aryfvalel 45870 . . . . . . . 8 (𝑋𝑉 → (𝑔 ∈ (1-aryF 𝑋) ↔ 𝑔:(𝑋m {0})⟶𝑋))
1412, 13anbi12d 630 . . . . . . 7 (𝑋𝑉 → ((𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋)) ↔ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋)))
15 ffn 6584 . . . . . . . . . . 11 (𝑓:(𝑋m {0})⟶𝑋𝑓 Fn (𝑋m {0}))
1615adantr 480 . . . . . . . . . 10 ((𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) → 𝑓 Fn (𝑋m {0}))
17163ad2ant2 1132 . . . . . . . . 9 ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → 𝑓 Fn (𝑋m {0}))
18 ffn 6584 . . . . . . . . . . 11 (𝑔:(𝑋m {0})⟶𝑋𝑔 Fn (𝑋m {0}))
1918adantl 481 . . . . . . . . . 10 ((𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) → 𝑔 Fn (𝑋m {0}))
20193ad2ant2 1132 . . . . . . . . 9 ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → 𝑔 Fn (𝑋m {0}))
21 elmapi 8595 . . . . . . . . . . . 12 (𝑦 ∈ (𝑋m {0}) → 𝑦:{0}⟶𝑋)
22 c0ex 10900 . . . . . . . . . . . . 13 0 ∈ V
2322fsn2 6990 . . . . . . . . . . . 12 (𝑦:{0}⟶𝑋 ↔ ((𝑦‘0) ∈ 𝑋𝑦 = {⟨0, (𝑦‘0)⟩}))
2421, 23sylib 217 . . . . . . . . . . 11 (𝑦 ∈ (𝑋m {0}) → ((𝑦‘0) ∈ 𝑋𝑦 = {⟨0, (𝑦‘0)⟩}))
25 opeq2 4802 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑦‘0) → ⟨0, 𝑥⟩ = ⟨0, (𝑦‘0)⟩)
2625sneqd 4570 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑦‘0) → {⟨0, 𝑥⟩} = {⟨0, (𝑦‘0)⟩})
2726fveq2d 6760 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑦‘0) → (𝑓‘{⟨0, 𝑥⟩}) = (𝑓‘{⟨0, (𝑦‘0)⟩}))
2826fveq2d 6760 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑦‘0) → (𝑔‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩}))
2927, 28eqeq12d 2754 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦‘0) → ((𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩}) ↔ (𝑓‘{⟨0, (𝑦‘0)⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩})))
3029rspccv 3549 . . . . . . . . . . . . . . 15 (∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩}) → ((𝑦‘0) ∈ 𝑋 → (𝑓‘{⟨0, (𝑦‘0)⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩})))
31303ad2ant3 1133 . . . . . . . . . . . . . 14 ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → ((𝑦‘0) ∈ 𝑋 → (𝑓‘{⟨0, (𝑦‘0)⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩})))
3231com12 32 . . . . . . . . . . . . 13 ((𝑦‘0) ∈ 𝑋 → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → (𝑓‘{⟨0, (𝑦‘0)⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩})))
3332adantr 480 . . . . . . . . . . . 12 (((𝑦‘0) ∈ 𝑋𝑦 = {⟨0, (𝑦‘0)⟩}) → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → (𝑓‘{⟨0, (𝑦‘0)⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩})))
34 fveq2 6756 . . . . . . . . . . . . . 14 (𝑦 = {⟨0, (𝑦‘0)⟩} → (𝑓𝑦) = (𝑓‘{⟨0, (𝑦‘0)⟩}))
35 fveq2 6756 . . . . . . . . . . . . . 14 (𝑦 = {⟨0, (𝑦‘0)⟩} → (𝑔𝑦) = (𝑔‘{⟨0, (𝑦‘0)⟩}))
3634, 35eqeq12d 2754 . . . . . . . . . . . . 13 (𝑦 = {⟨0, (𝑦‘0)⟩} → ((𝑓𝑦) = (𝑔𝑦) ↔ (𝑓‘{⟨0, (𝑦‘0)⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩})))
3736adantl 481 . . . . . . . . . . . 12 (((𝑦‘0) ∈ 𝑋𝑦 = {⟨0, (𝑦‘0)⟩}) → ((𝑓𝑦) = (𝑔𝑦) ↔ (𝑓‘{⟨0, (𝑦‘0)⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩})))
3833, 37sylibrd 258 . . . . . . . . . . 11 (((𝑦‘0) ∈ 𝑋𝑦 = {⟨0, (𝑦‘0)⟩}) → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → (𝑓𝑦) = (𝑔𝑦)))
3924, 38syl 17 . . . . . . . . . 10 (𝑦 ∈ (𝑋m {0}) → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → (𝑓𝑦) = (𝑔𝑦)))
4039impcom 407 . . . . . . . . 9 (((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) ∧ 𝑦 ∈ (𝑋m {0})) → (𝑓𝑦) = (𝑔𝑦))
4117, 20, 40eqfnfvd 6894 . . . . . . . 8 ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → 𝑓 = 𝑔)
42413exp 1117 . . . . . . 7 (𝑋𝑉 → ((𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) → (∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩}) → 𝑓 = 𝑔)))
4314, 42sylbid 239 . . . . . 6 (𝑋𝑉 → ((𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋)) → (∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩}) → 𝑓 = 𝑔)))
4443imp 406 . . . . 5 ((𝑋𝑉 ∧ (𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋))) → (∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩}) → 𝑓 = 𝑔))
4511, 44sylbid 239 . . . 4 ((𝑋𝑉 ∧ (𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋))) → ((𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩})) = (𝑥𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩})) → 𝑓 = 𝑔))
467, 45sylbid 239 . . 3 ((𝑋𝑉 ∧ (𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋))) → ((𝐻𝑓) = (𝐻𝑔) → 𝑓 = 𝑔))
4746ralrimivva 3114 . 2 (𝑋𝑉 → ∀𝑓 ∈ (1-aryF 𝑋)∀𝑔 ∈ (1-aryF 𝑋)((𝐻𝑓) = (𝐻𝑔) → 𝑓 = 𝑔))
48 dff13 7109 . 2 (𝐻:(1-aryF 𝑋)–1-1→(𝑋m 𝑋) ↔ (𝐻:(1-aryF 𝑋)⟶(𝑋m 𝑋) ∧ ∀𝑓 ∈ (1-aryF 𝑋)∀𝑔 ∈ (1-aryF 𝑋)((𝐻𝑓) = (𝐻𝑔) → 𝑓 = 𝑔)))
492, 47, 48sylanbrc 582 1 (𝑋𝑉𝐻:(1-aryF 𝑋)–1-1→(𝑋m 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  {csn 4558  cop 4564  cmpt 5153   Fn wfn 6413  wf 6414  1-1wf1 6415  cfv 6418  (class class class)co 7255  m cmap 8573  0cc0 10802  1c1 10803  -aryF cnaryf 45860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-naryf 45861
This theorem is referenced by:  1arymaptf1o  45878
  Copyright terms: Public domain W3C validator