Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arymaptf1 Structured version   Visualization version   GIF version

Theorem 1arymaptf1 45222
 Description: The mapping of unary (endo)functions is a one-to-one function into the set of endofunctions. (Contributed by AV, 19-May-2024.)
Hypothesis
Ref Expression
1arymaptfv.h 𝐻 = ( ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})))
Assertion
Ref Expression
1arymaptf1 (𝑋𝑉𝐻:(1-aryF 𝑋)–1-1→(𝑋m 𝑋))
Distinct variable groups:   𝑥,,𝑋   ,𝑉,𝑥
Allowed substitution hints:   𝐻(𝑥,)

Proof of Theorem 1arymaptf1
Dummy variables 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1arymaptfv.h . . 3 𝐻 = ( ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})))
211arymaptf 45221 . 2 (𝑋𝑉𝐻:(1-aryF 𝑋)⟶(𝑋m 𝑋))
311arymaptfv 45220 . . . . . 6 (𝑓 ∈ (1-aryF 𝑋) → (𝐻𝑓) = (𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩})))
43ad2antrl 727 . . . . 5 ((𝑋𝑉 ∧ (𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋))) → (𝐻𝑓) = (𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩})))
511arymaptfv 45220 . . . . . 6 (𝑔 ∈ (1-aryF 𝑋) → (𝐻𝑔) = (𝑥𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩})))
65ad2antll 728 . . . . 5 ((𝑋𝑉 ∧ (𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋))) → (𝐻𝑔) = (𝑥𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩})))
74, 6eqeq12d 2814 . . . 4 ((𝑋𝑉 ∧ (𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋))) → ((𝐻𝑓) = (𝐻𝑔) ↔ (𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩})) = (𝑥𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩}))))
8 fvex 6668 . . . . . . 7 (𝑓‘{⟨0, 𝑥⟩}) ∈ V
98rgenw 3118 . . . . . 6 𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) ∈ V
10 mpteqb 6774 . . . . . 6 (∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) ∈ V → ((𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩})) = (𝑥𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩})) ↔ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})))
119, 10mp1i 13 . . . . 5 ((𝑋𝑉 ∧ (𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋))) → ((𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩})) = (𝑥𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩})) ↔ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})))
12 1aryfvalel 45216 . . . . . . . 8 (𝑋𝑉 → (𝑓 ∈ (1-aryF 𝑋) ↔ 𝑓:(𝑋m {0})⟶𝑋))
13 1aryfvalel 45216 . . . . . . . 8 (𝑋𝑉 → (𝑔 ∈ (1-aryF 𝑋) ↔ 𝑔:(𝑋m {0})⟶𝑋))
1412, 13anbi12d 633 . . . . . . 7 (𝑋𝑉 → ((𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋)) ↔ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋)))
15 ffn 6495 . . . . . . . . . . 11 (𝑓:(𝑋m {0})⟶𝑋𝑓 Fn (𝑋m {0}))
1615adantr 484 . . . . . . . . . 10 ((𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) → 𝑓 Fn (𝑋m {0}))
17163ad2ant2 1131 . . . . . . . . 9 ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → 𝑓 Fn (𝑋m {0}))
18 ffn 6495 . . . . . . . . . . 11 (𝑔:(𝑋m {0})⟶𝑋𝑔 Fn (𝑋m {0}))
1918adantl 485 . . . . . . . . . 10 ((𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) → 𝑔 Fn (𝑋m {0}))
20193ad2ant2 1131 . . . . . . . . 9 ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → 𝑔 Fn (𝑋m {0}))
21 elmapi 8429 . . . . . . . . . . . 12 (𝑦 ∈ (𝑋m {0}) → 𝑦:{0}⟶𝑋)
22 c0ex 10642 . . . . . . . . . . . . 13 0 ∈ V
2322fsn2 6885 . . . . . . . . . . . 12 (𝑦:{0}⟶𝑋 ↔ ((𝑦‘0) ∈ 𝑋𝑦 = {⟨0, (𝑦‘0)⟩}))
2421, 23sylib 221 . . . . . . . . . . 11 (𝑦 ∈ (𝑋m {0}) → ((𝑦‘0) ∈ 𝑋𝑦 = {⟨0, (𝑦‘0)⟩}))
25 opeq2 4769 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑦‘0) → ⟨0, 𝑥⟩ = ⟨0, (𝑦‘0)⟩)
2625sneqd 4540 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑦‘0) → {⟨0, 𝑥⟩} = {⟨0, (𝑦‘0)⟩})
2726fveq2d 6659 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑦‘0) → (𝑓‘{⟨0, 𝑥⟩}) = (𝑓‘{⟨0, (𝑦‘0)⟩}))
2826fveq2d 6659 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑦‘0) → (𝑔‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩}))
2927, 28eqeq12d 2814 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦‘0) → ((𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩}) ↔ (𝑓‘{⟨0, (𝑦‘0)⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩})))
3029rspccv 3569 . . . . . . . . . . . . . . 15 (∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩}) → ((𝑦‘0) ∈ 𝑋 → (𝑓‘{⟨0, (𝑦‘0)⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩})))
31303ad2ant3 1132 . . . . . . . . . . . . . 14 ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → ((𝑦‘0) ∈ 𝑋 → (𝑓‘{⟨0, (𝑦‘0)⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩})))
3231com12 32 . . . . . . . . . . . . 13 ((𝑦‘0) ∈ 𝑋 → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → (𝑓‘{⟨0, (𝑦‘0)⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩})))
3332adantr 484 . . . . . . . . . . . 12 (((𝑦‘0) ∈ 𝑋𝑦 = {⟨0, (𝑦‘0)⟩}) → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → (𝑓‘{⟨0, (𝑦‘0)⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩})))
34 fveq2 6655 . . . . . . . . . . . . . 14 (𝑦 = {⟨0, (𝑦‘0)⟩} → (𝑓𝑦) = (𝑓‘{⟨0, (𝑦‘0)⟩}))
35 fveq2 6655 . . . . . . . . . . . . . 14 (𝑦 = {⟨0, (𝑦‘0)⟩} → (𝑔𝑦) = (𝑔‘{⟨0, (𝑦‘0)⟩}))
3634, 35eqeq12d 2814 . . . . . . . . . . . . 13 (𝑦 = {⟨0, (𝑦‘0)⟩} → ((𝑓𝑦) = (𝑔𝑦) ↔ (𝑓‘{⟨0, (𝑦‘0)⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩})))
3736adantl 485 . . . . . . . . . . . 12 (((𝑦‘0) ∈ 𝑋𝑦 = {⟨0, (𝑦‘0)⟩}) → ((𝑓𝑦) = (𝑔𝑦) ↔ (𝑓‘{⟨0, (𝑦‘0)⟩}) = (𝑔‘{⟨0, (𝑦‘0)⟩})))
3833, 37sylibrd 262 . . . . . . . . . . 11 (((𝑦‘0) ∈ 𝑋𝑦 = {⟨0, (𝑦‘0)⟩}) → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → (𝑓𝑦) = (𝑔𝑦)))
3924, 38syl 17 . . . . . . . . . 10 (𝑦 ∈ (𝑋m {0}) → ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → (𝑓𝑦) = (𝑔𝑦)))
4039impcom 411 . . . . . . . . 9 (((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) ∧ 𝑦 ∈ (𝑋m {0})) → (𝑓𝑦) = (𝑔𝑦))
4117, 20, 40eqfnfvd 6792 . . . . . . . 8 ((𝑋𝑉 ∧ (𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) ∧ ∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩})) → 𝑓 = 𝑔)
42413exp 1116 . . . . . . 7 (𝑋𝑉 → ((𝑓:(𝑋m {0})⟶𝑋𝑔:(𝑋m {0})⟶𝑋) → (∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩}) → 𝑓 = 𝑔)))
4314, 42sylbid 243 . . . . . 6 (𝑋𝑉 → ((𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋)) → (∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩}) → 𝑓 = 𝑔)))
4443imp 410 . . . . 5 ((𝑋𝑉 ∧ (𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋))) → (∀𝑥𝑋 (𝑓‘{⟨0, 𝑥⟩}) = (𝑔‘{⟨0, 𝑥⟩}) → 𝑓 = 𝑔))
4511, 44sylbid 243 . . . 4 ((𝑋𝑉 ∧ (𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋))) → ((𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩})) = (𝑥𝑋 ↦ (𝑔‘{⟨0, 𝑥⟩})) → 𝑓 = 𝑔))
467, 45sylbid 243 . . 3 ((𝑋𝑉 ∧ (𝑓 ∈ (1-aryF 𝑋) ∧ 𝑔 ∈ (1-aryF 𝑋))) → ((𝐻𝑓) = (𝐻𝑔) → 𝑓 = 𝑔))
4746ralrimivva 3156 . 2 (𝑋𝑉 → ∀𝑓 ∈ (1-aryF 𝑋)∀𝑔 ∈ (1-aryF 𝑋)((𝐻𝑓) = (𝐻𝑔) → 𝑓 = 𝑔))
48 dff13 7001 . 2 (𝐻:(1-aryF 𝑋)–1-1→(𝑋m 𝑋) ↔ (𝐻:(1-aryF 𝑋)⟶(𝑋m 𝑋) ∧ ∀𝑓 ∈ (1-aryF 𝑋)∀𝑔 ∈ (1-aryF 𝑋)((𝐻𝑓) = (𝐻𝑔) → 𝑓 = 𝑔)))
492, 47, 48sylanbrc 586 1 (𝑋𝑉𝐻:(1-aryF 𝑋)–1-1→(𝑋m 𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3106  Vcvv 3442  {csn 4528  ⟨cop 4534   ↦ cmpt 5114   Fn wfn 6327  ⟶wf 6328  –1-1→wf1 6329  ‘cfv 6332  (class class class)co 7145   ↑m cmap 8407  0cc0 10544  1c1 10545  -aryF cnaryf 45206 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-er 8290  df-map 8409  df-en 8511  df-dom 8512  df-sdom 8513  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-nn 11644  df-n0 11904  df-z 11990  df-uz 12252  df-fz 12906  df-fzo 13049  df-naryf 45207 This theorem is referenced by:  1arymaptf1o  45224
 Copyright terms: Public domain W3C validator