Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  incssnn0 Structured version   Visualization version   GIF version

Theorem incssnn0 42685
Description: Transitivity induction of subsets, lemma for nacsfix 42686. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Assertion
Ref Expression
incssnn0 ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0𝐵 ∈ (ℤ𝐴)) → (𝐹𝐴) ⊆ (𝐹𝐵))
Distinct variable group:   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem incssnn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6886 . . . . . 6 (𝑎 = 𝐴 → (𝐹𝑎) = (𝐹𝐴))
21sseq2d 3996 . . . . 5 (𝑎 = 𝐴 → ((𝐹𝐴) ⊆ (𝐹𝑎) ↔ (𝐹𝐴) ⊆ (𝐹𝐴)))
32imbi2d 340 . . . 4 (𝑎 = 𝐴 → (((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑎)) ↔ ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝐴))))
4 fveq2 6886 . . . . . 6 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
54sseq2d 3996 . . . . 5 (𝑎 = 𝑏 → ((𝐹𝐴) ⊆ (𝐹𝑎) ↔ (𝐹𝐴) ⊆ (𝐹𝑏)))
65imbi2d 340 . . . 4 (𝑎 = 𝑏 → (((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑎)) ↔ ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑏))))
7 fveq2 6886 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐹𝑎) = (𝐹‘(𝑏 + 1)))
87sseq2d 3996 . . . . 5 (𝑎 = (𝑏 + 1) → ((𝐹𝐴) ⊆ (𝐹𝑎) ↔ (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1))))
98imbi2d 340 . . . 4 (𝑎 = (𝑏 + 1) → (((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑎)) ↔ ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1)))))
10 fveq2 6886 . . . . . 6 (𝑎 = 𝐵 → (𝐹𝑎) = (𝐹𝐵))
1110sseq2d 3996 . . . . 5 (𝑎 = 𝐵 → ((𝐹𝐴) ⊆ (𝐹𝑎) ↔ (𝐹𝐴) ⊆ (𝐹𝐵)))
1211imbi2d 340 . . . 4 (𝑎 = 𝐵 → (((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑎)) ↔ ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝐵))))
13 ssid 3986 . . . . 5 (𝐹𝐴) ⊆ (𝐹𝐴)
14132a1i 12 . . . 4 (𝐴 ∈ ℤ → ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝐴)))
15 eluznn0 12941 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑏 ∈ (ℤ𝐴)) → 𝑏 ∈ ℕ0)
1615ancoms 458 . . . . . . . . 9 ((𝑏 ∈ (ℤ𝐴) ∧ 𝐴 ∈ ℕ0) → 𝑏 ∈ ℕ0)
17 fveq2 6886 . . . . . . . . . . 11 (𝑥 = 𝑏 → (𝐹𝑥) = (𝐹𝑏))
18 fvoveq1 7436 . . . . . . . . . . 11 (𝑥 = 𝑏 → (𝐹‘(𝑥 + 1)) = (𝐹‘(𝑏 + 1)))
1917, 18sseq12d 3997 . . . . . . . . . 10 (𝑥 = 𝑏 → ((𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ↔ (𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1))))
2019rspcv 3601 . . . . . . . . 9 (𝑏 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) → (𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1))))
2116, 20syl 17 . . . . . . . 8 ((𝑏 ∈ (ℤ𝐴) ∧ 𝐴 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) → (𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1))))
2221expimpd 453 . . . . . . 7 (𝑏 ∈ (ℤ𝐴) → ((𝐴 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → (𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1))))
2322ancomsd 465 . . . . . 6 (𝑏 ∈ (ℤ𝐴) → ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1))))
24 sstr2 3970 . . . . . . 7 ((𝐹𝐴) ⊆ (𝐹𝑏) → ((𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1)) → (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1))))
2524com12 32 . . . . . 6 ((𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1)) → ((𝐹𝐴) ⊆ (𝐹𝑏) → (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1))))
2623, 25syl6 35 . . . . 5 (𝑏 ∈ (ℤ𝐴) → ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → ((𝐹𝐴) ⊆ (𝐹𝑏) → (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1)))))
2726a2d 29 . . . 4 (𝑏 ∈ (ℤ𝐴) → (((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑏)) → ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1)))))
283, 6, 9, 12, 14, 27uzind4 12930 . . 3 (𝐵 ∈ (ℤ𝐴) → ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝐵)))
2928com12 32 . 2 ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐵 ∈ (ℤ𝐴) → (𝐹𝐴) ⊆ (𝐹𝐵)))
30293impia 1117 1 ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0𝐵 ∈ (ℤ𝐴)) → (𝐹𝐴) ⊆ (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  wss 3931  cfv 6541  (class class class)co 7413  1c1 11138   + caddc 11140  0cn0 12509  cz 12596  cuz 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-n0 12510  df-z 12597  df-uz 12861
This theorem is referenced by:  nacsfix  42686
  Copyright terms: Public domain W3C validator