Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  incssnn0 Structured version   Visualization version   GIF version

Theorem incssnn0 42715
Description: Transitivity induction of subsets, lemma for nacsfix 42716. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Assertion
Ref Expression
incssnn0 ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0𝐵 ∈ (ℤ𝐴)) → (𝐹𝐴) ⊆ (𝐹𝐵))
Distinct variable group:   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem incssnn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6914 . . . . . 6 (𝑎 = 𝐴 → (𝐹𝑎) = (𝐹𝐴))
21sseq2d 4031 . . . . 5 (𝑎 = 𝐴 → ((𝐹𝐴) ⊆ (𝐹𝑎) ↔ (𝐹𝐴) ⊆ (𝐹𝐴)))
32imbi2d 340 . . . 4 (𝑎 = 𝐴 → (((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑎)) ↔ ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝐴))))
4 fveq2 6914 . . . . . 6 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
54sseq2d 4031 . . . . 5 (𝑎 = 𝑏 → ((𝐹𝐴) ⊆ (𝐹𝑎) ↔ (𝐹𝐴) ⊆ (𝐹𝑏)))
65imbi2d 340 . . . 4 (𝑎 = 𝑏 → (((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑎)) ↔ ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑏))))
7 fveq2 6914 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐹𝑎) = (𝐹‘(𝑏 + 1)))
87sseq2d 4031 . . . . 5 (𝑎 = (𝑏 + 1) → ((𝐹𝐴) ⊆ (𝐹𝑎) ↔ (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1))))
98imbi2d 340 . . . 4 (𝑎 = (𝑏 + 1) → (((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑎)) ↔ ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1)))))
10 fveq2 6914 . . . . . 6 (𝑎 = 𝐵 → (𝐹𝑎) = (𝐹𝐵))
1110sseq2d 4031 . . . . 5 (𝑎 = 𝐵 → ((𝐹𝐴) ⊆ (𝐹𝑎) ↔ (𝐹𝐴) ⊆ (𝐹𝐵)))
1211imbi2d 340 . . . 4 (𝑎 = 𝐵 → (((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑎)) ↔ ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝐵))))
13 ssid 4021 . . . . 5 (𝐹𝐴) ⊆ (𝐹𝐴)
14132a1i 12 . . . 4 (𝐴 ∈ ℤ → ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝐴)))
15 eluznn0 12966 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑏 ∈ (ℤ𝐴)) → 𝑏 ∈ ℕ0)
1615ancoms 458 . . . . . . . . 9 ((𝑏 ∈ (ℤ𝐴) ∧ 𝐴 ∈ ℕ0) → 𝑏 ∈ ℕ0)
17 fveq2 6914 . . . . . . . . . . 11 (𝑥 = 𝑏 → (𝐹𝑥) = (𝐹𝑏))
18 fvoveq1 7461 . . . . . . . . . . 11 (𝑥 = 𝑏 → (𝐹‘(𝑥 + 1)) = (𝐹‘(𝑏 + 1)))
1917, 18sseq12d 4032 . . . . . . . . . 10 (𝑥 = 𝑏 → ((𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ↔ (𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1))))
2019rspcv 3621 . . . . . . . . 9 (𝑏 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) → (𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1))))
2116, 20syl 17 . . . . . . . 8 ((𝑏 ∈ (ℤ𝐴) ∧ 𝐴 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) → (𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1))))
2221expimpd 453 . . . . . . 7 (𝑏 ∈ (ℤ𝐴) → ((𝐴 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → (𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1))))
2322ancomsd 465 . . . . . 6 (𝑏 ∈ (ℤ𝐴) → ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1))))
24 sstr2 4005 . . . . . . 7 ((𝐹𝐴) ⊆ (𝐹𝑏) → ((𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1)) → (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1))))
2524com12 32 . . . . . 6 ((𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1)) → ((𝐹𝐴) ⊆ (𝐹𝑏) → (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1))))
2623, 25syl6 35 . . . . 5 (𝑏 ∈ (ℤ𝐴) → ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → ((𝐹𝐴) ⊆ (𝐹𝑏) → (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1)))))
2726a2d 29 . . . 4 (𝑏 ∈ (ℤ𝐴) → (((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑏)) → ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1)))))
283, 6, 9, 12, 14, 27uzind4 12955 . . 3 (𝐵 ∈ (ℤ𝐴) → ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝐵)))
2928com12 32 . 2 ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐵 ∈ (ℤ𝐴) → (𝐹𝐴) ⊆ (𝐹𝐵)))
30293impia 1118 1 ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0𝐵 ∈ (ℤ𝐴)) → (𝐹𝐴) ⊆ (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1539  wcel 2108  wral 3061  wss 3966  cfv 6569  (class class class)co 7438  1c1 11163   + caddc 11165  0cn0 12533  cz 12620  cuz 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-n0 12534  df-z 12621  df-uz 12886
This theorem is referenced by:  nacsfix  42716
  Copyright terms: Public domain W3C validator