Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  incssnn0 Structured version   Visualization version   GIF version

Theorem incssnn0 41999
Description: Transitivity induction of subsets, lemma for nacsfix 42000. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Assertion
Ref Expression
incssnn0 ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0𝐵 ∈ (ℤ𝐴)) → (𝐹𝐴) ⊆ (𝐹𝐵))
Distinct variable group:   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem incssnn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6882 . . . . . 6 (𝑎 = 𝐴 → (𝐹𝑎) = (𝐹𝐴))
21sseq2d 4007 . . . . 5 (𝑎 = 𝐴 → ((𝐹𝐴) ⊆ (𝐹𝑎) ↔ (𝐹𝐴) ⊆ (𝐹𝐴)))
32imbi2d 340 . . . 4 (𝑎 = 𝐴 → (((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑎)) ↔ ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝐴))))
4 fveq2 6882 . . . . . 6 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
54sseq2d 4007 . . . . 5 (𝑎 = 𝑏 → ((𝐹𝐴) ⊆ (𝐹𝑎) ↔ (𝐹𝐴) ⊆ (𝐹𝑏)))
65imbi2d 340 . . . 4 (𝑎 = 𝑏 → (((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑎)) ↔ ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑏))))
7 fveq2 6882 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐹𝑎) = (𝐹‘(𝑏 + 1)))
87sseq2d 4007 . . . . 5 (𝑎 = (𝑏 + 1) → ((𝐹𝐴) ⊆ (𝐹𝑎) ↔ (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1))))
98imbi2d 340 . . . 4 (𝑎 = (𝑏 + 1) → (((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑎)) ↔ ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1)))))
10 fveq2 6882 . . . . . 6 (𝑎 = 𝐵 → (𝐹𝑎) = (𝐹𝐵))
1110sseq2d 4007 . . . . 5 (𝑎 = 𝐵 → ((𝐹𝐴) ⊆ (𝐹𝑎) ↔ (𝐹𝐴) ⊆ (𝐹𝐵)))
1211imbi2d 340 . . . 4 (𝑎 = 𝐵 → (((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑎)) ↔ ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝐵))))
13 ssid 3997 . . . . 5 (𝐹𝐴) ⊆ (𝐹𝐴)
14132a1i 12 . . . 4 (𝐴 ∈ ℤ → ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝐴)))
15 eluznn0 12900 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑏 ∈ (ℤ𝐴)) → 𝑏 ∈ ℕ0)
1615ancoms 458 . . . . . . . . 9 ((𝑏 ∈ (ℤ𝐴) ∧ 𝐴 ∈ ℕ0) → 𝑏 ∈ ℕ0)
17 fveq2 6882 . . . . . . . . . . 11 (𝑥 = 𝑏 → (𝐹𝑥) = (𝐹𝑏))
18 fvoveq1 7425 . . . . . . . . . . 11 (𝑥 = 𝑏 → (𝐹‘(𝑥 + 1)) = (𝐹‘(𝑏 + 1)))
1917, 18sseq12d 4008 . . . . . . . . . 10 (𝑥 = 𝑏 → ((𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ↔ (𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1))))
2019rspcv 3600 . . . . . . . . 9 (𝑏 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) → (𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1))))
2116, 20syl 17 . . . . . . . 8 ((𝑏 ∈ (ℤ𝐴) ∧ 𝐴 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) → (𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1))))
2221expimpd 453 . . . . . . 7 (𝑏 ∈ (ℤ𝐴) → ((𝐴 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → (𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1))))
2322ancomsd 465 . . . . . 6 (𝑏 ∈ (ℤ𝐴) → ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1))))
24 sstr2 3982 . . . . . . 7 ((𝐹𝐴) ⊆ (𝐹𝑏) → ((𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1)) → (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1))))
2524com12 32 . . . . . 6 ((𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1)) → ((𝐹𝐴) ⊆ (𝐹𝑏) → (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1))))
2623, 25syl6 35 . . . . 5 (𝑏 ∈ (ℤ𝐴) → ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → ((𝐹𝐴) ⊆ (𝐹𝑏) → (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1)))))
2726a2d 29 . . . 4 (𝑏 ∈ (ℤ𝐴) → (((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑏)) → ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1)))))
283, 6, 9, 12, 14, 27uzind4 12889 . . 3 (𝐵 ∈ (ℤ𝐴) → ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝐵)))
2928com12 32 . 2 ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐵 ∈ (ℤ𝐴) → (𝐹𝐴) ⊆ (𝐹𝐵)))
30293impia 1114 1 ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0𝐵 ∈ (ℤ𝐴)) → (𝐹𝐴) ⊆ (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  wral 3053  wss 3941  cfv 6534  (class class class)co 7402  1c1 11108   + caddc 11110  0cn0 12471  cz 12557  cuz 12821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822
This theorem is referenced by:  nacsfix  42000
  Copyright terms: Public domain W3C validator