MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc2lem1 Structured version   Visualization version   GIF version

Theorem infxpenc2lem1 10033
Description: Lemma for infxpenc2 10036. (Contributed by Mario Carneiro, 30-May-2015.)
Hypotheses
Ref Expression
infxpenc2.1 (𝜑𝐴 ∈ On)
infxpenc2.2 (𝜑 → ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
infxpenc2.3 𝑊 = ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏))
Assertion
Ref Expression
infxpenc2lem1 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → (𝑊 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑊)))
Distinct variable groups:   𝑛,𝑏,𝑤,𝑥,𝐴   𝜑,𝑏,𝑤,𝑥   𝑤,𝑊,𝑥
Allowed substitution hints:   𝜑(𝑛)   𝑊(𝑛,𝑏)

Proof of Theorem infxpenc2lem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 infxpenc2.2 . . . 4 (𝜑 → ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
21r19.21bi 3234 . . 3 ((𝜑𝑏𝐴) → (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
32impr 454 . 2 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))
4 simpr 484 . . 3 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
5 infxpenc2.3 . . . . . 6 𝑊 = ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏))
6 oveq2 7413 . . . . . . . . . 10 (𝑥 = 𝑤 → (ω ↑o 𝑥) = (ω ↑o 𝑤))
7 eqid 2735 . . . . . . . . . 10 (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)) = (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))
8 ovex 7438 . . . . . . . . . 10 (ω ↑o 𝑤) ∈ V
96, 7, 8fvmpt 6986 . . . . . . . . 9 (𝑤 ∈ (On ∖ 1o) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘𝑤) = (ω ↑o 𝑤))
109ad2antrl 728 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘𝑤) = (ω ↑o 𝑤))
11 f1ofo 6825 . . . . . . . . . 10 ((𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤) → (𝑛𝑏):𝑏onto→(ω ↑o 𝑤))
1211ad2antll 729 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑛𝑏):𝑏onto→(ω ↑o 𝑤))
13 forn 6793 . . . . . . . . 9 ((𝑛𝑏):𝑏onto→(ω ↑o 𝑤) → ran (𝑛𝑏) = (ω ↑o 𝑤))
1412, 13syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ran (𝑛𝑏) = (ω ↑o 𝑤))
1510, 14eqtr4d 2773 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘𝑤) = ran (𝑛𝑏))
16 ovex 7438 . . . . . . . . . . 11 (ω ↑o 𝑥) ∈ V
17162a1i 12 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑥 ∈ (On ∖ 1o) → (ω ↑o 𝑥) ∈ V))
18 omelon 9660 . . . . . . . . . . . . 13 ω ∈ On
19 1onn 8652 . . . . . . . . . . . . 13 1o ∈ ω
20 ondif2 8514 . . . . . . . . . . . . 13 (ω ∈ (On ∖ 2o) ↔ (ω ∈ On ∧ 1o ∈ ω))
2118, 19, 20mpbir2an 711 . . . . . . . . . . . 12 ω ∈ (On ∖ 2o)
22 eldifi 4106 . . . . . . . . . . . . 13 (𝑥 ∈ (On ∖ 1o) → 𝑥 ∈ On)
2322ad2antrl 728 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) ∧ (𝑥 ∈ (On ∖ 1o) ∧ 𝑦 ∈ (On ∖ 1o))) → 𝑥 ∈ On)
24 eldifi 4106 . . . . . . . . . . . . 13 (𝑦 ∈ (On ∖ 1o) → 𝑦 ∈ On)
2524ad2antll 729 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) ∧ (𝑥 ∈ (On ∖ 1o) ∧ 𝑦 ∈ (On ∖ 1o))) → 𝑦 ∈ On)
26 oecan 8601 . . . . . . . . . . . 12 ((ω ∈ (On ∖ 2o) ∧ 𝑥 ∈ On ∧ 𝑦 ∈ On) → ((ω ↑o 𝑥) = (ω ↑o 𝑦) ↔ 𝑥 = 𝑦))
2721, 23, 25, 26mp3an2i 1468 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) ∧ (𝑥 ∈ (On ∖ 1o) ∧ 𝑦 ∈ (On ∖ 1o))) → ((ω ↑o 𝑥) = (ω ↑o 𝑦) ↔ 𝑥 = 𝑦))
2827ex 412 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑥 ∈ (On ∖ 1o) ∧ 𝑦 ∈ (On ∖ 1o)) → ((ω ↑o 𝑥) = (ω ↑o 𝑦) ↔ 𝑥 = 𝑦)))
2917, 28dom2lem 9006 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)):(On ∖ 1o)–1-1→V)
30 f1f1orn 6829 . . . . . . . . 9 ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)):(On ∖ 1o)–1-1→V → (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)):(On ∖ 1o)–1-1-onto→ran (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)))
3129, 30syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)):(On ∖ 1o)–1-1-onto→ran (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)))
32 simprl 770 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → 𝑤 ∈ (On ∖ 1o))
33 f1ocnvfv 7271 . . . . . . . 8 (((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)):(On ∖ 1o)–1-1-onto→ran (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)) ∧ 𝑤 ∈ (On ∖ 1o)) → (((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘𝑤) = ran (𝑛𝑏) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏)) = 𝑤))
3431, 32, 33syl2anc 584 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘𝑤) = ran (𝑛𝑏) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏)) = 𝑤))
3515, 34mpd 15 . . . . . 6 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏)) = 𝑤)
365, 35eqtrid 2782 . . . . 5 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → 𝑊 = 𝑤)
3736eleq1d 2819 . . . 4 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑊 ∈ (On ∖ 1o) ↔ 𝑤 ∈ (On ∖ 1o)))
3836oveq2d 7421 . . . . 5 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (ω ↑o 𝑊) = (ω ↑o 𝑤))
3938f1oeq3d 6815 . . . 4 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑊) ↔ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
4037, 39anbi12d 632 . . 3 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑊 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑊)) ↔ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))))
414, 40mpbird 257 . 2 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑊 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑊)))
423, 41rexlimddv 3147 1 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → (𝑊 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  cdif 3923  wss 3926  cmpt 5201  ccnv 5653  ran crn 5655  Oncon0 6352  1-1wf1 6528  ontowfo 6529  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  ωcom 7861  1oc1o 8473  2oc2o 8474  o coe 8479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729  ax-inf2 9655
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-oexp 8486
This theorem is referenced by:  infxpenc2lem2  10034
  Copyright terms: Public domain W3C validator