MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc2lem1 Structured version   Visualization version   GIF version

Theorem infxpenc2lem1 10010
Description: Lemma for infxpenc2 10013. (Contributed by Mario Carneiro, 30-May-2015.)
Hypotheses
Ref Expression
infxpenc2.1 (πœ‘ β†’ 𝐴 ∈ On)
infxpenc2.2 (πœ‘ β†’ βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ βˆƒπ‘€ ∈ (On βˆ– 1o)(π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
infxpenc2.3 π‘Š = (β—‘(π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯))β€˜ran (π‘›β€˜π‘))
Assertion
Ref Expression
infxpenc2lem1 ((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) β†’ (π‘Š ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o π‘Š)))
Distinct variable groups:   𝑛,𝑏,𝑀,π‘₯,𝐴   πœ‘,𝑏,𝑀,π‘₯   𝑀,π‘Š,π‘₯
Allowed substitution hints:   πœ‘(𝑛)   π‘Š(𝑛,𝑏)

Proof of Theorem infxpenc2lem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 infxpenc2.2 . . . 4 (πœ‘ β†’ βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ βˆƒπ‘€ ∈ (On βˆ– 1o)(π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
21r19.21bi 3248 . . 3 ((πœ‘ ∧ 𝑏 ∈ 𝐴) β†’ (Ο‰ βŠ† 𝑏 β†’ βˆƒπ‘€ ∈ (On βˆ– 1o)(π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
32impr 455 . 2 ((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) β†’ βˆƒπ‘€ ∈ (On βˆ– 1o)(π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))
4 simpr 485 . . 3 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
5 infxpenc2.3 . . . . . 6 π‘Š = (β—‘(π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯))β€˜ran (π‘›β€˜π‘))
6 oveq2 7413 . . . . . . . . . 10 (π‘₯ = 𝑀 β†’ (Ο‰ ↑o π‘₯) = (Ο‰ ↑o 𝑀))
7 eqid 2732 . . . . . . . . . 10 (π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯)) = (π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯))
8 ovex 7438 . . . . . . . . . 10 (Ο‰ ↑o 𝑀) ∈ V
96, 7, 8fvmpt 6995 . . . . . . . . 9 (𝑀 ∈ (On βˆ– 1o) β†’ ((π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯))β€˜π‘€) = (Ο‰ ↑o 𝑀))
109ad2antrl 726 . . . . . . . 8 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ ((π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯))β€˜π‘€) = (Ο‰ ↑o 𝑀))
11 f1ofo 6837 . . . . . . . . . 10 ((π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀) β†’ (π‘›β€˜π‘):𝑏–ontoβ†’(Ο‰ ↑o 𝑀))
1211ad2antll 727 . . . . . . . . 9 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ (π‘›β€˜π‘):𝑏–ontoβ†’(Ο‰ ↑o 𝑀))
13 forn 6805 . . . . . . . . 9 ((π‘›β€˜π‘):𝑏–ontoβ†’(Ο‰ ↑o 𝑀) β†’ ran (π‘›β€˜π‘) = (Ο‰ ↑o 𝑀))
1412, 13syl 17 . . . . . . . 8 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ ran (π‘›β€˜π‘) = (Ο‰ ↑o 𝑀))
1510, 14eqtr4d 2775 . . . . . . 7 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ ((π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯))β€˜π‘€) = ran (π‘›β€˜π‘))
16 ovex 7438 . . . . . . . . . . 11 (Ο‰ ↑o π‘₯) ∈ V
17162a1i 12 . . . . . . . . . 10 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ (π‘₯ ∈ (On βˆ– 1o) β†’ (Ο‰ ↑o π‘₯) ∈ V))
18 omelon 9637 . . . . . . . . . . . . 13 Ο‰ ∈ On
19 1onn 8635 . . . . . . . . . . . . 13 1o ∈ Ο‰
20 ondif2 8498 . . . . . . . . . . . . 13 (Ο‰ ∈ (On βˆ– 2o) ↔ (Ο‰ ∈ On ∧ 1o ∈ Ο‰))
2118, 19, 20mpbir2an 709 . . . . . . . . . . . 12 Ο‰ ∈ (On βˆ– 2o)
22 eldifi 4125 . . . . . . . . . . . . 13 (π‘₯ ∈ (On βˆ– 1o) β†’ π‘₯ ∈ On)
2322ad2antrl 726 . . . . . . . . . . . 12 ((((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) ∧ (π‘₯ ∈ (On βˆ– 1o) ∧ 𝑦 ∈ (On βˆ– 1o))) β†’ π‘₯ ∈ On)
24 eldifi 4125 . . . . . . . . . . . . 13 (𝑦 ∈ (On βˆ– 1o) β†’ 𝑦 ∈ On)
2524ad2antll 727 . . . . . . . . . . . 12 ((((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) ∧ (π‘₯ ∈ (On βˆ– 1o) ∧ 𝑦 ∈ (On βˆ– 1o))) β†’ 𝑦 ∈ On)
26 oecan 8585 . . . . . . . . . . . 12 ((Ο‰ ∈ (On βˆ– 2o) ∧ π‘₯ ∈ On ∧ 𝑦 ∈ On) β†’ ((Ο‰ ↑o π‘₯) = (Ο‰ ↑o 𝑦) ↔ π‘₯ = 𝑦))
2721, 23, 25, 26mp3an2i 1466 . . . . . . . . . . 11 ((((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) ∧ (π‘₯ ∈ (On βˆ– 1o) ∧ 𝑦 ∈ (On βˆ– 1o))) β†’ ((Ο‰ ↑o π‘₯) = (Ο‰ ↑o 𝑦) ↔ π‘₯ = 𝑦))
2827ex 413 . . . . . . . . . 10 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ ((π‘₯ ∈ (On βˆ– 1o) ∧ 𝑦 ∈ (On βˆ– 1o)) β†’ ((Ο‰ ↑o π‘₯) = (Ο‰ ↑o 𝑦) ↔ π‘₯ = 𝑦)))
2917, 28dom2lem 8984 . . . . . . . . 9 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ (π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯)):(On βˆ– 1o)–1-1β†’V)
30 f1f1orn 6841 . . . . . . . . 9 ((π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯)):(On βˆ– 1o)–1-1β†’V β†’ (π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯)):(On βˆ– 1o)–1-1-ontoβ†’ran (π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯)))
3129, 30syl 17 . . . . . . . 8 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ (π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯)):(On βˆ– 1o)–1-1-ontoβ†’ran (π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯)))
32 simprl 769 . . . . . . . 8 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ 𝑀 ∈ (On βˆ– 1o))
33 f1ocnvfv 7272 . . . . . . . 8 (((π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯)):(On βˆ– 1o)–1-1-ontoβ†’ran (π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯)) ∧ 𝑀 ∈ (On βˆ– 1o)) β†’ (((π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯))β€˜π‘€) = ran (π‘›β€˜π‘) β†’ (β—‘(π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯))β€˜ran (π‘›β€˜π‘)) = 𝑀))
3431, 32, 33syl2anc 584 . . . . . . 7 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ (((π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯))β€˜π‘€) = ran (π‘›β€˜π‘) β†’ (β—‘(π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯))β€˜ran (π‘›β€˜π‘)) = 𝑀))
3515, 34mpd 15 . . . . . 6 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ (β—‘(π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯))β€˜ran (π‘›β€˜π‘)) = 𝑀)
365, 35eqtrid 2784 . . . . 5 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ π‘Š = 𝑀)
3736eleq1d 2818 . . . 4 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ (π‘Š ∈ (On βˆ– 1o) ↔ 𝑀 ∈ (On βˆ– 1o)))
3836oveq2d 7421 . . . . 5 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ (Ο‰ ↑o π‘Š) = (Ο‰ ↑o 𝑀))
3938f1oeq3d 6827 . . . 4 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ ((π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o π‘Š) ↔ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
4037, 39anbi12d 631 . . 3 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ ((π‘Š ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o π‘Š)) ↔ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))))
414, 40mpbird 256 . 2 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ (π‘Š ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o π‘Š)))
423, 41rexlimddv 3161 1 ((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) β†’ (π‘Š ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o π‘Š)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070  Vcvv 3474   βˆ– cdif 3944   βŠ† wss 3947   ↦ cmpt 5230  β—‘ccnv 5674  ran crn 5676  Oncon0 6361  β€“1-1β†’wf1 6537  β€“ontoβ†’wfo 6538  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  (class class class)co 7405  Ο‰com 7851  1oc1o 8455  2oc2o 8456   ↑o coe 8461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721  ax-inf2 9632
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-omul 8467  df-oexp 8468
This theorem is referenced by:  infxpenc2lem2  10011
  Copyright terms: Public domain W3C validator