MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc2lem1 Structured version   Visualization version   GIF version

Theorem infxpenc2lem1 9948
Description: Lemma for infxpenc2 9951. (Contributed by Mario Carneiro, 30-May-2015.)
Hypotheses
Ref Expression
infxpenc2.1 (𝜑𝐴 ∈ On)
infxpenc2.2 (𝜑 → ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
infxpenc2.3 𝑊 = ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏))
Assertion
Ref Expression
infxpenc2lem1 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → (𝑊 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑊)))
Distinct variable groups:   𝑛,𝑏,𝑤,𝑥,𝐴   𝜑,𝑏,𝑤,𝑥   𝑤,𝑊,𝑥
Allowed substitution hints:   𝜑(𝑛)   𝑊(𝑛,𝑏)

Proof of Theorem infxpenc2lem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 infxpenc2.2 . . . 4 (𝜑 → ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
21r19.21bi 3227 . . 3 ((𝜑𝑏𝐴) → (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
32impr 454 . 2 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))
4 simpr 484 . . 3 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
5 infxpenc2.3 . . . . . 6 𝑊 = ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏))
6 oveq2 7377 . . . . . . . . . 10 (𝑥 = 𝑤 → (ω ↑o 𝑥) = (ω ↑o 𝑤))
7 eqid 2729 . . . . . . . . . 10 (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)) = (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))
8 ovex 7402 . . . . . . . . . 10 (ω ↑o 𝑤) ∈ V
96, 7, 8fvmpt 6950 . . . . . . . . 9 (𝑤 ∈ (On ∖ 1o) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘𝑤) = (ω ↑o 𝑤))
109ad2antrl 728 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘𝑤) = (ω ↑o 𝑤))
11 f1ofo 6789 . . . . . . . . . 10 ((𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤) → (𝑛𝑏):𝑏onto→(ω ↑o 𝑤))
1211ad2antll 729 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑛𝑏):𝑏onto→(ω ↑o 𝑤))
13 forn 6757 . . . . . . . . 9 ((𝑛𝑏):𝑏onto→(ω ↑o 𝑤) → ran (𝑛𝑏) = (ω ↑o 𝑤))
1412, 13syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ran (𝑛𝑏) = (ω ↑o 𝑤))
1510, 14eqtr4d 2767 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘𝑤) = ran (𝑛𝑏))
16 ovex 7402 . . . . . . . . . . 11 (ω ↑o 𝑥) ∈ V
17162a1i 12 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑥 ∈ (On ∖ 1o) → (ω ↑o 𝑥) ∈ V))
18 omelon 9575 . . . . . . . . . . . . 13 ω ∈ On
19 1onn 8581 . . . . . . . . . . . . 13 1o ∈ ω
20 ondif2 8443 . . . . . . . . . . . . 13 (ω ∈ (On ∖ 2o) ↔ (ω ∈ On ∧ 1o ∈ ω))
2118, 19, 20mpbir2an 711 . . . . . . . . . . . 12 ω ∈ (On ∖ 2o)
22 eldifi 4090 . . . . . . . . . . . . 13 (𝑥 ∈ (On ∖ 1o) → 𝑥 ∈ On)
2322ad2antrl 728 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) ∧ (𝑥 ∈ (On ∖ 1o) ∧ 𝑦 ∈ (On ∖ 1o))) → 𝑥 ∈ On)
24 eldifi 4090 . . . . . . . . . . . . 13 (𝑦 ∈ (On ∖ 1o) → 𝑦 ∈ On)
2524ad2antll 729 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) ∧ (𝑥 ∈ (On ∖ 1o) ∧ 𝑦 ∈ (On ∖ 1o))) → 𝑦 ∈ On)
26 oecan 8530 . . . . . . . . . . . 12 ((ω ∈ (On ∖ 2o) ∧ 𝑥 ∈ On ∧ 𝑦 ∈ On) → ((ω ↑o 𝑥) = (ω ↑o 𝑦) ↔ 𝑥 = 𝑦))
2721, 23, 25, 26mp3an2i 1468 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) ∧ (𝑥 ∈ (On ∖ 1o) ∧ 𝑦 ∈ (On ∖ 1o))) → ((ω ↑o 𝑥) = (ω ↑o 𝑦) ↔ 𝑥 = 𝑦))
2827ex 412 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑥 ∈ (On ∖ 1o) ∧ 𝑦 ∈ (On ∖ 1o)) → ((ω ↑o 𝑥) = (ω ↑o 𝑦) ↔ 𝑥 = 𝑦)))
2917, 28dom2lem 8940 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)):(On ∖ 1o)–1-1→V)
30 f1f1orn 6793 . . . . . . . . 9 ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)):(On ∖ 1o)–1-1→V → (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)):(On ∖ 1o)–1-1-onto→ran (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)))
3129, 30syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)):(On ∖ 1o)–1-1-onto→ran (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)))
32 simprl 770 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → 𝑤 ∈ (On ∖ 1o))
33 f1ocnvfv 7235 . . . . . . . 8 (((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)):(On ∖ 1o)–1-1-onto→ran (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)) ∧ 𝑤 ∈ (On ∖ 1o)) → (((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘𝑤) = ran (𝑛𝑏) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏)) = 𝑤))
3431, 32, 33syl2anc 584 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘𝑤) = ran (𝑛𝑏) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏)) = 𝑤))
3515, 34mpd 15 . . . . . 6 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏)) = 𝑤)
365, 35eqtrid 2776 . . . . 5 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → 𝑊 = 𝑤)
3736eleq1d 2813 . . . 4 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑊 ∈ (On ∖ 1o) ↔ 𝑤 ∈ (On ∖ 1o)))
3836oveq2d 7385 . . . . 5 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (ω ↑o 𝑊) = (ω ↑o 𝑤))
3938f1oeq3d 6779 . . . 4 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑊) ↔ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
4037, 39anbi12d 632 . . 3 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑊 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑊)) ↔ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))))
414, 40mpbird 257 . 2 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑊 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑊)))
423, 41rexlimddv 3140 1 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → (𝑊 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  cdif 3908  wss 3911  cmpt 5183  ccnv 5630  ran crn 5632  Oncon0 6320  1-1wf1 6496  ontowfo 6497  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  ωcom 7822  1oc1o 8404  2oc2o 8405  o coe 8410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-oexp 8417
This theorem is referenced by:  infxpenc2lem2  9949
  Copyright terms: Public domain W3C validator