MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc2lem1 Structured version   Visualization version   GIF version

Theorem infxpenc2lem1 10017
Description: Lemma for infxpenc2 10020. (Contributed by Mario Carneiro, 30-May-2015.)
Hypotheses
Ref Expression
infxpenc2.1 (πœ‘ β†’ 𝐴 ∈ On)
infxpenc2.2 (πœ‘ β†’ βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ βˆƒπ‘€ ∈ (On βˆ– 1o)(π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
infxpenc2.3 π‘Š = (β—‘(π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯))β€˜ran (π‘›β€˜π‘))
Assertion
Ref Expression
infxpenc2lem1 ((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) β†’ (π‘Š ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o π‘Š)))
Distinct variable groups:   𝑛,𝑏,𝑀,π‘₯,𝐴   πœ‘,𝑏,𝑀,π‘₯   𝑀,π‘Š,π‘₯
Allowed substitution hints:   πœ‘(𝑛)   π‘Š(𝑛,𝑏)

Proof of Theorem infxpenc2lem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 infxpenc2.2 . . . 4 (πœ‘ β†’ βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ βˆƒπ‘€ ∈ (On βˆ– 1o)(π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
21r19.21bi 3247 . . 3 ((πœ‘ ∧ 𝑏 ∈ 𝐴) β†’ (Ο‰ βŠ† 𝑏 β†’ βˆƒπ‘€ ∈ (On βˆ– 1o)(π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
32impr 454 . 2 ((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) β†’ βˆƒπ‘€ ∈ (On βˆ– 1o)(π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))
4 simpr 484 . . 3 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
5 infxpenc2.3 . . . . . 6 π‘Š = (β—‘(π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯))β€˜ran (π‘›β€˜π‘))
6 oveq2 7420 . . . . . . . . . 10 (π‘₯ = 𝑀 β†’ (Ο‰ ↑o π‘₯) = (Ο‰ ↑o 𝑀))
7 eqid 2731 . . . . . . . . . 10 (π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯)) = (π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯))
8 ovex 7445 . . . . . . . . . 10 (Ο‰ ↑o 𝑀) ∈ V
96, 7, 8fvmpt 6999 . . . . . . . . 9 (𝑀 ∈ (On βˆ– 1o) β†’ ((π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯))β€˜π‘€) = (Ο‰ ↑o 𝑀))
109ad2antrl 725 . . . . . . . 8 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ ((π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯))β€˜π‘€) = (Ο‰ ↑o 𝑀))
11 f1ofo 6841 . . . . . . . . . 10 ((π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀) β†’ (π‘›β€˜π‘):𝑏–ontoβ†’(Ο‰ ↑o 𝑀))
1211ad2antll 726 . . . . . . . . 9 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ (π‘›β€˜π‘):𝑏–ontoβ†’(Ο‰ ↑o 𝑀))
13 forn 6809 . . . . . . . . 9 ((π‘›β€˜π‘):𝑏–ontoβ†’(Ο‰ ↑o 𝑀) β†’ ran (π‘›β€˜π‘) = (Ο‰ ↑o 𝑀))
1412, 13syl 17 . . . . . . . 8 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ ran (π‘›β€˜π‘) = (Ο‰ ↑o 𝑀))
1510, 14eqtr4d 2774 . . . . . . 7 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ ((π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯))β€˜π‘€) = ran (π‘›β€˜π‘))
16 ovex 7445 . . . . . . . . . . 11 (Ο‰ ↑o π‘₯) ∈ V
17162a1i 12 . . . . . . . . . 10 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ (π‘₯ ∈ (On βˆ– 1o) β†’ (Ο‰ ↑o π‘₯) ∈ V))
18 omelon 9644 . . . . . . . . . . . . 13 Ο‰ ∈ On
19 1onn 8642 . . . . . . . . . . . . 13 1o ∈ Ο‰
20 ondif2 8505 . . . . . . . . . . . . 13 (Ο‰ ∈ (On βˆ– 2o) ↔ (Ο‰ ∈ On ∧ 1o ∈ Ο‰))
2118, 19, 20mpbir2an 708 . . . . . . . . . . . 12 Ο‰ ∈ (On βˆ– 2o)
22 eldifi 4127 . . . . . . . . . . . . 13 (π‘₯ ∈ (On βˆ– 1o) β†’ π‘₯ ∈ On)
2322ad2antrl 725 . . . . . . . . . . . 12 ((((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) ∧ (π‘₯ ∈ (On βˆ– 1o) ∧ 𝑦 ∈ (On βˆ– 1o))) β†’ π‘₯ ∈ On)
24 eldifi 4127 . . . . . . . . . . . . 13 (𝑦 ∈ (On βˆ– 1o) β†’ 𝑦 ∈ On)
2524ad2antll 726 . . . . . . . . . . . 12 ((((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) ∧ (π‘₯ ∈ (On βˆ– 1o) ∧ 𝑦 ∈ (On βˆ– 1o))) β†’ 𝑦 ∈ On)
26 oecan 8592 . . . . . . . . . . . 12 ((Ο‰ ∈ (On βˆ– 2o) ∧ π‘₯ ∈ On ∧ 𝑦 ∈ On) β†’ ((Ο‰ ↑o π‘₯) = (Ο‰ ↑o 𝑦) ↔ π‘₯ = 𝑦))
2721, 23, 25, 26mp3an2i 1465 . . . . . . . . . . 11 ((((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) ∧ (π‘₯ ∈ (On βˆ– 1o) ∧ 𝑦 ∈ (On βˆ– 1o))) β†’ ((Ο‰ ↑o π‘₯) = (Ο‰ ↑o 𝑦) ↔ π‘₯ = 𝑦))
2827ex 412 . . . . . . . . . 10 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ ((π‘₯ ∈ (On βˆ– 1o) ∧ 𝑦 ∈ (On βˆ– 1o)) β†’ ((Ο‰ ↑o π‘₯) = (Ο‰ ↑o 𝑦) ↔ π‘₯ = 𝑦)))
2917, 28dom2lem 8991 . . . . . . . . 9 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ (π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯)):(On βˆ– 1o)–1-1β†’V)
30 f1f1orn 6845 . . . . . . . . 9 ((π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯)):(On βˆ– 1o)–1-1β†’V β†’ (π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯)):(On βˆ– 1o)–1-1-ontoβ†’ran (π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯)))
3129, 30syl 17 . . . . . . . 8 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ (π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯)):(On βˆ– 1o)–1-1-ontoβ†’ran (π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯)))
32 simprl 768 . . . . . . . 8 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ 𝑀 ∈ (On βˆ– 1o))
33 f1ocnvfv 7279 . . . . . . . 8 (((π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯)):(On βˆ– 1o)–1-1-ontoβ†’ran (π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯)) ∧ 𝑀 ∈ (On βˆ– 1o)) β†’ (((π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯))β€˜π‘€) = ran (π‘›β€˜π‘) β†’ (β—‘(π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯))β€˜ran (π‘›β€˜π‘)) = 𝑀))
3431, 32, 33syl2anc 583 . . . . . . 7 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ (((π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯))β€˜π‘€) = ran (π‘›β€˜π‘) β†’ (β—‘(π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯))β€˜ran (π‘›β€˜π‘)) = 𝑀))
3515, 34mpd 15 . . . . . 6 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ (β—‘(π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯))β€˜ran (π‘›β€˜π‘)) = 𝑀)
365, 35eqtrid 2783 . . . . 5 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ π‘Š = 𝑀)
3736eleq1d 2817 . . . 4 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ (π‘Š ∈ (On βˆ– 1o) ↔ 𝑀 ∈ (On βˆ– 1o)))
3836oveq2d 7428 . . . . 5 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ (Ο‰ ↑o π‘Š) = (Ο‰ ↑o 𝑀))
3938f1oeq3d 6831 . . . 4 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ ((π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o π‘Š) ↔ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
4037, 39anbi12d 630 . . 3 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ ((π‘Š ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o π‘Š)) ↔ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))))
414, 40mpbird 256 . 2 (((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) ∧ (𝑀 ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))) β†’ (π‘Š ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o π‘Š)))
423, 41rexlimddv 3160 1 ((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Ο‰ βŠ† 𝑏)) β†’ (π‘Š ∈ (On βˆ– 1o) ∧ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o π‘Š)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  βˆƒwrex 3069  Vcvv 3473   βˆ– cdif 3946   βŠ† wss 3949   ↦ cmpt 5232  β—‘ccnv 5676  ran crn 5678  Oncon0 6365  β€“1-1β†’wf1 6541  β€“ontoβ†’wfo 6542  β€“1-1-ontoβ†’wf1o 6543  β€˜cfv 6544  (class class class)co 7412  Ο‰com 7858  1oc1o 8462  2oc2o 8463   ↑o coe 8468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7728  ax-inf2 9639
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-2o 8470  df-oadd 8473  df-omul 8474  df-oexp 8475
This theorem is referenced by:  infxpenc2lem2  10018
  Copyright terms: Public domain W3C validator