MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc2lem1 Structured version   Visualization version   GIF version

Theorem infxpenc2lem1 9445
Description: Lemma for infxpenc2 9448. (Contributed by Mario Carneiro, 30-May-2015.)
Hypotheses
Ref Expression
infxpenc2.1 (𝜑𝐴 ∈ On)
infxpenc2.2 (𝜑 → ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
infxpenc2.3 𝑊 = ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏))
Assertion
Ref Expression
infxpenc2lem1 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → (𝑊 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑊)))
Distinct variable groups:   𝑛,𝑏,𝑤,𝑥,𝐴   𝜑,𝑏,𝑤,𝑥   𝑤,𝑊,𝑥
Allowed substitution hints:   𝜑(𝑛)   𝑊(𝑛,𝑏)

Proof of Theorem infxpenc2lem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 infxpenc2.2 . . . 4 (𝜑 → ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
21r19.21bi 3208 . . 3 ((𝜑𝑏𝐴) → (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
32impr 457 . 2 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))
4 simpr 487 . . 3 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
5 infxpenc2.3 . . . . . 6 𝑊 = ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏))
6 oveq2 7164 . . . . . . . . . 10 (𝑥 = 𝑤 → (ω ↑o 𝑥) = (ω ↑o 𝑤))
7 eqid 2821 . . . . . . . . . 10 (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)) = (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))
8 ovex 7189 . . . . . . . . . 10 (ω ↑o 𝑤) ∈ V
96, 7, 8fvmpt 6768 . . . . . . . . 9 (𝑤 ∈ (On ∖ 1o) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘𝑤) = (ω ↑o 𝑤))
109ad2antrl 726 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘𝑤) = (ω ↑o 𝑤))
11 f1ofo 6622 . . . . . . . . . 10 ((𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤) → (𝑛𝑏):𝑏onto→(ω ↑o 𝑤))
1211ad2antll 727 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑛𝑏):𝑏onto→(ω ↑o 𝑤))
13 forn 6593 . . . . . . . . 9 ((𝑛𝑏):𝑏onto→(ω ↑o 𝑤) → ran (𝑛𝑏) = (ω ↑o 𝑤))
1412, 13syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ran (𝑛𝑏) = (ω ↑o 𝑤))
1510, 14eqtr4d 2859 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘𝑤) = ran (𝑛𝑏))
16 ovex 7189 . . . . . . . . . . 11 (ω ↑o 𝑥) ∈ V
17162a1i 12 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑥 ∈ (On ∖ 1o) → (ω ↑o 𝑥) ∈ V))
18 omelon 9109 . . . . . . . . . . . . 13 ω ∈ On
19 1onn 8265 . . . . . . . . . . . . 13 1o ∈ ω
20 ondif2 8127 . . . . . . . . . . . . 13 (ω ∈ (On ∖ 2o) ↔ (ω ∈ On ∧ 1o ∈ ω))
2118, 19, 20mpbir2an 709 . . . . . . . . . . . 12 ω ∈ (On ∖ 2o)
22 eldifi 4103 . . . . . . . . . . . . 13 (𝑥 ∈ (On ∖ 1o) → 𝑥 ∈ On)
2322ad2antrl 726 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) ∧ (𝑥 ∈ (On ∖ 1o) ∧ 𝑦 ∈ (On ∖ 1o))) → 𝑥 ∈ On)
24 eldifi 4103 . . . . . . . . . . . . 13 (𝑦 ∈ (On ∖ 1o) → 𝑦 ∈ On)
2524ad2antll 727 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) ∧ (𝑥 ∈ (On ∖ 1o) ∧ 𝑦 ∈ (On ∖ 1o))) → 𝑦 ∈ On)
26 oecan 8215 . . . . . . . . . . . 12 ((ω ∈ (On ∖ 2o) ∧ 𝑥 ∈ On ∧ 𝑦 ∈ On) → ((ω ↑o 𝑥) = (ω ↑o 𝑦) ↔ 𝑥 = 𝑦))
2721, 23, 25, 26mp3an2i 1462 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) ∧ (𝑥 ∈ (On ∖ 1o) ∧ 𝑦 ∈ (On ∖ 1o))) → ((ω ↑o 𝑥) = (ω ↑o 𝑦) ↔ 𝑥 = 𝑦))
2827ex 415 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑥 ∈ (On ∖ 1o) ∧ 𝑦 ∈ (On ∖ 1o)) → ((ω ↑o 𝑥) = (ω ↑o 𝑦) ↔ 𝑥 = 𝑦)))
2917, 28dom2lem 8549 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)):(On ∖ 1o)–1-1→V)
30 f1f1orn 6626 . . . . . . . . 9 ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)):(On ∖ 1o)–1-1→V → (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)):(On ∖ 1o)–1-1-onto→ran (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)))
3129, 30syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)):(On ∖ 1o)–1-1-onto→ran (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)))
32 simprl 769 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → 𝑤 ∈ (On ∖ 1o))
33 f1ocnvfv 7035 . . . . . . . 8 (((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)):(On ∖ 1o)–1-1-onto→ran (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)) ∧ 𝑤 ∈ (On ∖ 1o)) → (((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘𝑤) = ran (𝑛𝑏) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏)) = 𝑤))
3431, 32, 33syl2anc 586 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘𝑤) = ran (𝑛𝑏) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏)) = 𝑤))
3515, 34mpd 15 . . . . . 6 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏)) = 𝑤)
365, 35syl5eq 2868 . . . . 5 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → 𝑊 = 𝑤)
3736eleq1d 2897 . . . 4 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑊 ∈ (On ∖ 1o) ↔ 𝑤 ∈ (On ∖ 1o)))
3836oveq2d 7172 . . . . 5 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (ω ↑o 𝑊) = (ω ↑o 𝑤))
3938f1oeq3d 6612 . . . 4 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑊) ↔ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
4037, 39anbi12d 632 . . 3 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑊 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑊)) ↔ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))))
414, 40mpbird 259 . 2 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑊 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑊)))
423, 41rexlimddv 3291 1 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → (𝑊 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139  Vcvv 3494  cdif 3933  wss 3936  cmpt 5146  ccnv 5554  ran crn 5556  Oncon0 6191  1-1wf1 6352  ontowfo 6353  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  ωcom 7580  1oc1o 8095  2oc2o 8096  o coe 8101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-omul 8107  df-oexp 8108
This theorem is referenced by:  infxpenc2lem2  9446
  Copyright terms: Public domain W3C validator