MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc2lem1 Structured version   Visualization version   GIF version

Theorem infxpenc2lem1 9955
Description: Lemma for infxpenc2 9958. (Contributed by Mario Carneiro, 30-May-2015.)
Hypotheses
Ref Expression
infxpenc2.1 (𝜑𝐴 ∈ On)
infxpenc2.2 (𝜑 → ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
infxpenc2.3 𝑊 = ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏))
Assertion
Ref Expression
infxpenc2lem1 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → (𝑊 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑊)))
Distinct variable groups:   𝑛,𝑏,𝑤,𝑥,𝐴   𝜑,𝑏,𝑤,𝑥   𝑤,𝑊,𝑥
Allowed substitution hints:   𝜑(𝑛)   𝑊(𝑛,𝑏)

Proof of Theorem infxpenc2lem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 infxpenc2.2 . . . 4 (𝜑 → ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
21r19.21bi 3234 . . 3 ((𝜑𝑏𝐴) → (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
32impr 455 . 2 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))
4 simpr 485 . . 3 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
5 infxpenc2.3 . . . . . 6 𝑊 = ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏))
6 oveq2 7365 . . . . . . . . . 10 (𝑥 = 𝑤 → (ω ↑o 𝑥) = (ω ↑o 𝑤))
7 eqid 2736 . . . . . . . . . 10 (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)) = (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))
8 ovex 7390 . . . . . . . . . 10 (ω ↑o 𝑤) ∈ V
96, 7, 8fvmpt 6948 . . . . . . . . 9 (𝑤 ∈ (On ∖ 1o) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘𝑤) = (ω ↑o 𝑤))
109ad2antrl 726 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘𝑤) = (ω ↑o 𝑤))
11 f1ofo 6791 . . . . . . . . . 10 ((𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤) → (𝑛𝑏):𝑏onto→(ω ↑o 𝑤))
1211ad2antll 727 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑛𝑏):𝑏onto→(ω ↑o 𝑤))
13 forn 6759 . . . . . . . . 9 ((𝑛𝑏):𝑏onto→(ω ↑o 𝑤) → ran (𝑛𝑏) = (ω ↑o 𝑤))
1412, 13syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ran (𝑛𝑏) = (ω ↑o 𝑤))
1510, 14eqtr4d 2779 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘𝑤) = ran (𝑛𝑏))
16 ovex 7390 . . . . . . . . . . 11 (ω ↑o 𝑥) ∈ V
17162a1i 12 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑥 ∈ (On ∖ 1o) → (ω ↑o 𝑥) ∈ V))
18 omelon 9582 . . . . . . . . . . . . 13 ω ∈ On
19 1onn 8586 . . . . . . . . . . . . 13 1o ∈ ω
20 ondif2 8448 . . . . . . . . . . . . 13 (ω ∈ (On ∖ 2o) ↔ (ω ∈ On ∧ 1o ∈ ω))
2118, 19, 20mpbir2an 709 . . . . . . . . . . . 12 ω ∈ (On ∖ 2o)
22 eldifi 4086 . . . . . . . . . . . . 13 (𝑥 ∈ (On ∖ 1o) → 𝑥 ∈ On)
2322ad2antrl 726 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) ∧ (𝑥 ∈ (On ∖ 1o) ∧ 𝑦 ∈ (On ∖ 1o))) → 𝑥 ∈ On)
24 eldifi 4086 . . . . . . . . . . . . 13 (𝑦 ∈ (On ∖ 1o) → 𝑦 ∈ On)
2524ad2antll 727 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) ∧ (𝑥 ∈ (On ∖ 1o) ∧ 𝑦 ∈ (On ∖ 1o))) → 𝑦 ∈ On)
26 oecan 8536 . . . . . . . . . . . 12 ((ω ∈ (On ∖ 2o) ∧ 𝑥 ∈ On ∧ 𝑦 ∈ On) → ((ω ↑o 𝑥) = (ω ↑o 𝑦) ↔ 𝑥 = 𝑦))
2721, 23, 25, 26mp3an2i 1466 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) ∧ (𝑥 ∈ (On ∖ 1o) ∧ 𝑦 ∈ (On ∖ 1o))) → ((ω ↑o 𝑥) = (ω ↑o 𝑦) ↔ 𝑥 = 𝑦))
2827ex 413 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑥 ∈ (On ∖ 1o) ∧ 𝑦 ∈ (On ∖ 1o)) → ((ω ↑o 𝑥) = (ω ↑o 𝑦) ↔ 𝑥 = 𝑦)))
2917, 28dom2lem 8932 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)):(On ∖ 1o)–1-1→V)
30 f1f1orn 6795 . . . . . . . . 9 ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)):(On ∖ 1o)–1-1→V → (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)):(On ∖ 1o)–1-1-onto→ran (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)))
3129, 30syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)):(On ∖ 1o)–1-1-onto→ran (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)))
32 simprl 769 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → 𝑤 ∈ (On ∖ 1o))
33 f1ocnvfv 7224 . . . . . . . 8 (((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)):(On ∖ 1o)–1-1-onto→ran (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)) ∧ 𝑤 ∈ (On ∖ 1o)) → (((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘𝑤) = ran (𝑛𝑏) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏)) = 𝑤))
3431, 32, 33syl2anc 584 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘𝑤) = ran (𝑛𝑏) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏)) = 𝑤))
3515, 34mpd 15 . . . . . 6 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏)) = 𝑤)
365, 35eqtrid 2788 . . . . 5 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → 𝑊 = 𝑤)
3736eleq1d 2822 . . . 4 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑊 ∈ (On ∖ 1o) ↔ 𝑤 ∈ (On ∖ 1o)))
3836oveq2d 7373 . . . . 5 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (ω ↑o 𝑊) = (ω ↑o 𝑤))
3938f1oeq3d 6781 . . . 4 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑊) ↔ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
4037, 39anbi12d 631 . . 3 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑊 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑊)) ↔ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))))
414, 40mpbird 256 . 2 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑊 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑊)))
423, 41rexlimddv 3158 1 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → (𝑊 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  cdif 3907  wss 3910  cmpt 5188  ccnv 5632  ran crn 5634  Oncon0 6317  1-1wf1 6493  ontowfo 6494  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  ωcom 7802  1oc1o 8405  2oc2o 8406  o coe 8411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672  ax-inf2 9577
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-oexp 8418
This theorem is referenced by:  infxpenc2lem2  9956
  Copyright terms: Public domain W3C validator