Step | Hyp | Ref
| Expression |
1 | | infxpenc2.2 |
. . . 4
⊢ (𝜑 → ∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) |
2 | 1 | r19.21bi 3134 |
. . 3
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐴) → (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) |
3 | 2 | impr 455 |
. 2
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) → ∃𝑤 ∈ (On ∖ 1o)(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤)) |
4 | | simpr 485 |
. . 3
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧
(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) → (𝑤 ∈ (On ∖ 1o) ∧
(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) |
5 | | infxpenc2.3 |
. . . . . 6
⊢ 𝑊 = (◡(𝑥 ∈ (On ∖ 1o) ↦
(ω ↑o 𝑥))‘ran (𝑛‘𝑏)) |
6 | | oveq2 7283 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → (ω ↑o 𝑥) = (ω ↑o
𝑤)) |
7 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (On ∖
1o) ↦ (ω ↑o 𝑥)) = (𝑥 ∈ (On ∖ 1o) ↦
(ω ↑o 𝑥)) |
8 | | ovex 7308 |
. . . . . . . . . 10
⊢ (ω
↑o 𝑤)
∈ V |
9 | 6, 7, 8 | fvmpt 6875 |
. . . . . . . . 9
⊢ (𝑤 ∈ (On ∖
1o) → ((𝑥
∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘𝑤) = (ω ↑o 𝑤)) |
10 | 9 | ad2antrl 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧
(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) → ((𝑥 ∈ (On ∖ 1o) ↦
(ω ↑o 𝑥))‘𝑤) = (ω ↑o 𝑤)) |
11 | | f1ofo 6723 |
. . . . . . . . . 10
⊢ ((𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤) → (𝑛‘𝑏):𝑏–onto→(ω ↑o 𝑤)) |
12 | 11 | ad2antll 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧
(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) → (𝑛‘𝑏):𝑏–onto→(ω ↑o 𝑤)) |
13 | | forn 6691 |
. . . . . . . . 9
⊢ ((𝑛‘𝑏):𝑏–onto→(ω ↑o 𝑤) → ran (𝑛‘𝑏) = (ω ↑o 𝑤)) |
14 | 12, 13 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧
(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) → ran (𝑛‘𝑏) = (ω ↑o 𝑤)) |
15 | 10, 14 | eqtr4d 2781 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧
(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) → ((𝑥 ∈ (On ∖ 1o) ↦
(ω ↑o 𝑥))‘𝑤) = ran (𝑛‘𝑏)) |
16 | | ovex 7308 |
. . . . . . . . . . 11
⊢ (ω
↑o 𝑥)
∈ V |
17 | 16 | 2a1i 12 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧
(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) → (𝑥 ∈ (On ∖ 1o) →
(ω ↑o 𝑥) ∈ V)) |
18 | | omelon 9404 |
. . . . . . . . . . . . 13
⊢ ω
∈ On |
19 | | 1onn 8470 |
. . . . . . . . . . . . 13
⊢
1o ∈ ω |
20 | | ondif2 8332 |
. . . . . . . . . . . . 13
⊢ (ω
∈ (On ∖ 2o) ↔ (ω ∈ On ∧ 1o
∈ ω)) |
21 | 18, 19, 20 | mpbir2an 708 |
. . . . . . . . . . . 12
⊢ ω
∈ (On ∖ 2o) |
22 | | eldifi 4061 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (On ∖
1o) → 𝑥
∈ On) |
23 | 22 | ad2antrl 725 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧
(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) ∧ (𝑥 ∈ (On ∖ 1o) ∧
𝑦 ∈ (On ∖
1o))) → 𝑥
∈ On) |
24 | | eldifi 4061 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (On ∖
1o) → 𝑦
∈ On) |
25 | 24 | ad2antll 726 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧
(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) ∧ (𝑥 ∈ (On ∖ 1o) ∧
𝑦 ∈ (On ∖
1o))) → 𝑦
∈ On) |
26 | | oecan 8420 |
. . . . . . . . . . . 12
⊢ ((ω
∈ (On ∖ 2o) ∧ 𝑥 ∈ On ∧ 𝑦 ∈ On) → ((ω
↑o 𝑥) =
(ω ↑o 𝑦) ↔ 𝑥 = 𝑦)) |
27 | 21, 23, 25, 26 | mp3an2i 1465 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧
(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) ∧ (𝑥 ∈ (On ∖ 1o) ∧
𝑦 ∈ (On ∖
1o))) → ((ω ↑o 𝑥) = (ω ↑o 𝑦) ↔ 𝑥 = 𝑦)) |
28 | 27 | ex 413 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧
(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) → ((𝑥 ∈ (On ∖ 1o) ∧
𝑦 ∈ (On ∖
1o)) → ((ω ↑o 𝑥) = (ω ↑o 𝑦) ↔ 𝑥 = 𝑦))) |
29 | 17, 28 | dom2lem 8780 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧
(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) → (𝑥 ∈ (On ∖ 1o) ↦
(ω ↑o 𝑥)):(On ∖ 1o)–1-1→V) |
30 | | f1f1orn 6727 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (On ∖
1o) ↦ (ω ↑o 𝑥)):(On ∖ 1o)–1-1→V → (𝑥 ∈ (On ∖ 1o) ↦
(ω ↑o 𝑥)):(On ∖ 1o)–1-1-onto→ran (𝑥 ∈ (On ∖ 1o) ↦
(ω ↑o 𝑥))) |
31 | 29, 30 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧
(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) → (𝑥 ∈ (On ∖ 1o) ↦
(ω ↑o 𝑥)):(On ∖ 1o)–1-1-onto→ran (𝑥 ∈ (On ∖ 1o) ↦
(ω ↑o 𝑥))) |
32 | | simprl 768 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧
(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) → 𝑤 ∈ (On ∖
1o)) |
33 | | f1ocnvfv 7150 |
. . . . . . . 8
⊢ (((𝑥 ∈ (On ∖
1o) ↦ (ω ↑o 𝑥)):(On ∖ 1o)–1-1-onto→ran (𝑥 ∈ (On ∖ 1o) ↦
(ω ↑o 𝑥)) ∧ 𝑤 ∈ (On ∖ 1o)) →
(((𝑥 ∈ (On ∖
1o) ↦ (ω ↑o 𝑥))‘𝑤) = ran (𝑛‘𝑏) → (◡(𝑥 ∈ (On ∖ 1o) ↦
(ω ↑o 𝑥))‘ran (𝑛‘𝑏)) = 𝑤)) |
34 | 31, 32, 33 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧
(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) → (((𝑥 ∈ (On ∖ 1o) ↦
(ω ↑o 𝑥))‘𝑤) = ran (𝑛‘𝑏) → (◡(𝑥 ∈ (On ∖ 1o) ↦
(ω ↑o 𝑥))‘ran (𝑛‘𝑏)) = 𝑤)) |
35 | 15, 34 | mpd 15 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧
(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) → (◡(𝑥 ∈ (On ∖ 1o) ↦
(ω ↑o 𝑥))‘ran (𝑛‘𝑏)) = 𝑤) |
36 | 5, 35 | eqtrid 2790 |
. . . . 5
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧
(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) → 𝑊 = 𝑤) |
37 | 36 | eleq1d 2823 |
. . . 4
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧
(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) → (𝑊 ∈ (On ∖ 1o) ↔
𝑤 ∈ (On ∖
1o))) |
38 | 36 | oveq2d 7291 |
. . . . 5
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧
(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) → (ω ↑o 𝑊) = (ω ↑o
𝑤)) |
39 | 38 | f1oeq3d 6713 |
. . . 4
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧
(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) → ((𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑊) ↔ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) |
40 | 37, 39 | anbi12d 631 |
. . 3
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧
(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) → ((𝑊 ∈ (On ∖ 1o) ∧
(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑊)) ↔ (𝑤 ∈ (On ∖ 1o) ∧
(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤)))) |
41 | 4, 40 | mpbird 256 |
. 2
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧
(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) → (𝑊 ∈ (On ∖ 1o) ∧
(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑊))) |
42 | 3, 41 | rexlimddv 3220 |
1
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) → (𝑊 ∈ (On ∖ 1o) ∧
(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑊))) |