MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc2lem1 Structured version   Visualization version   GIF version

Theorem infxpenc2lem1 9706
Description: Lemma for infxpenc2 9709. (Contributed by Mario Carneiro, 30-May-2015.)
Hypotheses
Ref Expression
infxpenc2.1 (𝜑𝐴 ∈ On)
infxpenc2.2 (𝜑 → ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
infxpenc2.3 𝑊 = ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏))
Assertion
Ref Expression
infxpenc2lem1 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → (𝑊 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑊)))
Distinct variable groups:   𝑛,𝑏,𝑤,𝑥,𝐴   𝜑,𝑏,𝑤,𝑥   𝑤,𝑊,𝑥
Allowed substitution hints:   𝜑(𝑛)   𝑊(𝑛,𝑏)

Proof of Theorem infxpenc2lem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 infxpenc2.2 . . . 4 (𝜑 → ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
21r19.21bi 3132 . . 3 ((𝜑𝑏𝐴) → (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
32impr 454 . 2 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))
4 simpr 484 . . 3 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
5 infxpenc2.3 . . . . . 6 𝑊 = ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏))
6 oveq2 7263 . . . . . . . . . 10 (𝑥 = 𝑤 → (ω ↑o 𝑥) = (ω ↑o 𝑤))
7 eqid 2738 . . . . . . . . . 10 (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)) = (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))
8 ovex 7288 . . . . . . . . . 10 (ω ↑o 𝑤) ∈ V
96, 7, 8fvmpt 6857 . . . . . . . . 9 (𝑤 ∈ (On ∖ 1o) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘𝑤) = (ω ↑o 𝑤))
109ad2antrl 724 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘𝑤) = (ω ↑o 𝑤))
11 f1ofo 6707 . . . . . . . . . 10 ((𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤) → (𝑛𝑏):𝑏onto→(ω ↑o 𝑤))
1211ad2antll 725 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑛𝑏):𝑏onto→(ω ↑o 𝑤))
13 forn 6675 . . . . . . . . 9 ((𝑛𝑏):𝑏onto→(ω ↑o 𝑤) → ran (𝑛𝑏) = (ω ↑o 𝑤))
1412, 13syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ran (𝑛𝑏) = (ω ↑o 𝑤))
1510, 14eqtr4d 2781 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘𝑤) = ran (𝑛𝑏))
16 ovex 7288 . . . . . . . . . . 11 (ω ↑o 𝑥) ∈ V
17162a1i 12 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑥 ∈ (On ∖ 1o) → (ω ↑o 𝑥) ∈ V))
18 omelon 9334 . . . . . . . . . . . . 13 ω ∈ On
19 1onn 8432 . . . . . . . . . . . . 13 1o ∈ ω
20 ondif2 8294 . . . . . . . . . . . . 13 (ω ∈ (On ∖ 2o) ↔ (ω ∈ On ∧ 1o ∈ ω))
2118, 19, 20mpbir2an 707 . . . . . . . . . . . 12 ω ∈ (On ∖ 2o)
22 eldifi 4057 . . . . . . . . . . . . 13 (𝑥 ∈ (On ∖ 1o) → 𝑥 ∈ On)
2322ad2antrl 724 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) ∧ (𝑥 ∈ (On ∖ 1o) ∧ 𝑦 ∈ (On ∖ 1o))) → 𝑥 ∈ On)
24 eldifi 4057 . . . . . . . . . . . . 13 (𝑦 ∈ (On ∖ 1o) → 𝑦 ∈ On)
2524ad2antll 725 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) ∧ (𝑥 ∈ (On ∖ 1o) ∧ 𝑦 ∈ (On ∖ 1o))) → 𝑦 ∈ On)
26 oecan 8382 . . . . . . . . . . . 12 ((ω ∈ (On ∖ 2o) ∧ 𝑥 ∈ On ∧ 𝑦 ∈ On) → ((ω ↑o 𝑥) = (ω ↑o 𝑦) ↔ 𝑥 = 𝑦))
2721, 23, 25, 26mp3an2i 1464 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) ∧ (𝑥 ∈ (On ∖ 1o) ∧ 𝑦 ∈ (On ∖ 1o))) → ((ω ↑o 𝑥) = (ω ↑o 𝑦) ↔ 𝑥 = 𝑦))
2827ex 412 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑥 ∈ (On ∖ 1o) ∧ 𝑦 ∈ (On ∖ 1o)) → ((ω ↑o 𝑥) = (ω ↑o 𝑦) ↔ 𝑥 = 𝑦)))
2917, 28dom2lem 8735 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)):(On ∖ 1o)–1-1→V)
30 f1f1orn 6711 . . . . . . . . 9 ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)):(On ∖ 1o)–1-1→V → (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)):(On ∖ 1o)–1-1-onto→ran (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)))
3129, 30syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)):(On ∖ 1o)–1-1-onto→ran (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)))
32 simprl 767 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → 𝑤 ∈ (On ∖ 1o))
33 f1ocnvfv 7131 . . . . . . . 8 (((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)):(On ∖ 1o)–1-1-onto→ran (𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥)) ∧ 𝑤 ∈ (On ∖ 1o)) → (((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘𝑤) = ran (𝑛𝑏) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏)) = 𝑤))
3431, 32, 33syl2anc 583 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘𝑤) = ran (𝑛𝑏) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏)) = 𝑤))
3515, 34mpd 15 . . . . . 6 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏)) = 𝑤)
365, 35eqtrid 2790 . . . . 5 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → 𝑊 = 𝑤)
3736eleq1d 2823 . . . 4 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑊 ∈ (On ∖ 1o) ↔ 𝑤 ∈ (On ∖ 1o)))
3836oveq2d 7271 . . . . 5 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (ω ↑o 𝑊) = (ω ↑o 𝑤))
3938f1oeq3d 6697 . . . 4 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑊) ↔ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
4037, 39anbi12d 630 . . 3 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → ((𝑊 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑊)) ↔ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))))
414, 40mpbird 256 . 2 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))) → (𝑊 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑊)))
423, 41rexlimddv 3219 1 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → (𝑊 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  wss 3883  cmpt 5153  ccnv 5579  ran crn 5581  Oncon0 6251  1-1wf1 6415  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  ωcom 7687  1oc1o 8260  2oc2o 8261  o coe 8266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-oexp 8273
This theorem is referenced by:  infxpenc2lem2  9707
  Copyright terms: Public domain W3C validator