MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfval2 Structured version   Visualization version   GIF version

Theorem cantnfval2 9129
Description: Alternate expression for the value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfcl.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cantnfcl.f (𝜑𝐹𝑆)
cantnfval.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
Assertion
Ref Expression
cantnfval2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘dom 𝐺))
Distinct variable groups:   𝑧,𝑘,𝐵   𝐴,𝑘,𝑧   𝑘,𝐹,𝑧   𝑆,𝑘,𝑧   𝑘,𝐺,𝑧   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐻(𝑧,𝑘)

Proof of Theorem cantnfval2
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
3 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
4 cantnfcl.g . . 3 𝐺 = OrdIso( E , (𝐹 supp ∅))
5 cantnfcl.f . . 3 (𝜑𝐹𝑆)
6 cantnfval.h . . 3 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
71, 2, 3, 4, 5, 6cantnfval 9128 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝐺))
8 ssid 3975 . . 3 dom 𝐺 ⊆ dom 𝐺
91, 2, 3, 4, 5cantnfcl 9127 . . . . 5 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
109simprd 499 . . . 4 (𝜑 → dom 𝐺 ∈ ω)
11 sseq1 3978 . . . . . . 7 (𝑢 = ∅ → (𝑢 ⊆ dom 𝐺 ↔ ∅ ⊆ dom 𝐺))
12 fveq2 6661 . . . . . . . . 9 (𝑢 = ∅ → (𝐻𝑢) = (𝐻‘∅))
13 0ex 5197 . . . . . . . . . 10 ∅ ∈ V
146seqom0g 8088 . . . . . . . . . 10 (∅ ∈ V → (𝐻‘∅) = ∅)
1513, 14ax-mp 5 . . . . . . . . 9 (𝐻‘∅) = ∅
1612, 15syl6eq 2875 . . . . . . . 8 (𝑢 = ∅ → (𝐻𝑢) = ∅)
17 fveq2 6661 . . . . . . . . 9 (𝑢 = ∅ → (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘∅))
18 eqid 2824 . . . . . . . . . . 11 seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
1918seqom0g 8088 . . . . . . . . . 10 (∅ ∈ V → (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘∅) = ∅)
2013, 19ax-mp 5 . . . . . . . . 9 (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘∅) = ∅
2117, 20syl6eq 2875 . . . . . . . 8 (𝑢 = ∅ → (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢) = ∅)
2216, 21eqeq12d 2840 . . . . . . 7 (𝑢 = ∅ → ((𝐻𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢) ↔ ∅ = ∅))
2311, 22imbi12d 348 . . . . . 6 (𝑢 = ∅ → ((𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢)) ↔ (∅ ⊆ dom 𝐺 → ∅ = ∅)))
2423imbi2d 344 . . . . 5 (𝑢 = ∅ → ((𝜑 → (𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢))) ↔ (𝜑 → (∅ ⊆ dom 𝐺 → ∅ = ∅))))
25 sseq1 3978 . . . . . . 7 (𝑢 = 𝑣 → (𝑢 ⊆ dom 𝐺𝑣 ⊆ dom 𝐺))
26 fveq2 6661 . . . . . . . 8 (𝑢 = 𝑣 → (𝐻𝑢) = (𝐻𝑣))
27 fveq2 6661 . . . . . . . 8 (𝑢 = 𝑣 → (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣))
2826, 27eqeq12d 2840 . . . . . . 7 (𝑢 = 𝑣 → ((𝐻𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢) ↔ (𝐻𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)))
2925, 28imbi12d 348 . . . . . 6 (𝑢 = 𝑣 → ((𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢)) ↔ (𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣))))
3029imbi2d 344 . . . . 5 (𝑢 = 𝑣 → ((𝜑 → (𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢))) ↔ (𝜑 → (𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)))))
31 sseq1 3978 . . . . . . 7 (𝑢 = suc 𝑣 → (𝑢 ⊆ dom 𝐺 ↔ suc 𝑣 ⊆ dom 𝐺))
32 fveq2 6661 . . . . . . . 8 (𝑢 = suc 𝑣 → (𝐻𝑢) = (𝐻‘suc 𝑣))
33 fveq2 6661 . . . . . . . 8 (𝑢 = suc 𝑣 → (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘suc 𝑣))
3432, 33eqeq12d 2840 . . . . . . 7 (𝑢 = suc 𝑣 → ((𝐻𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢) ↔ (𝐻‘suc 𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘suc 𝑣)))
3531, 34imbi12d 348 . . . . . 6 (𝑢 = suc 𝑣 → ((𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢)) ↔ (suc 𝑣 ⊆ dom 𝐺 → (𝐻‘suc 𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘suc 𝑣))))
3635imbi2d 344 . . . . 5 (𝑢 = suc 𝑣 → ((𝜑 → (𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢))) ↔ (𝜑 → (suc 𝑣 ⊆ dom 𝐺 → (𝐻‘suc 𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘suc 𝑣)))))
37 sseq1 3978 . . . . . . 7 (𝑢 = dom 𝐺 → (𝑢 ⊆ dom 𝐺 ↔ dom 𝐺 ⊆ dom 𝐺))
38 fveq2 6661 . . . . . . . 8 (𝑢 = dom 𝐺 → (𝐻𝑢) = (𝐻‘dom 𝐺))
39 fveq2 6661 . . . . . . . 8 (𝑢 = dom 𝐺 → (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘dom 𝐺))
4038, 39eqeq12d 2840 . . . . . . 7 (𝑢 = dom 𝐺 → ((𝐻𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢) ↔ (𝐻‘dom 𝐺) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘dom 𝐺)))
4137, 40imbi12d 348 . . . . . 6 (𝑢 = dom 𝐺 → ((𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢)) ↔ (dom 𝐺 ⊆ dom 𝐺 → (𝐻‘dom 𝐺) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘dom 𝐺))))
4241imbi2d 344 . . . . 5 (𝑢 = dom 𝐺 → ((𝜑 → (𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢))) ↔ (𝜑 → (dom 𝐺 ⊆ dom 𝐺 → (𝐻‘dom 𝐺) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘dom 𝐺)))))
43 eqid 2824 . . . . . 6 ∅ = ∅
44432a1i 12 . . . . 5 (𝜑 → (∅ ⊆ dom 𝐺 → ∅ = ∅))
45 sssucid 6255 . . . . . . . . . 10 𝑣 ⊆ suc 𝑣
46 sstr 3961 . . . . . . . . . 10 ((𝑣 ⊆ suc 𝑣 ∧ suc 𝑣 ⊆ dom 𝐺) → 𝑣 ⊆ dom 𝐺)
4745, 46mpan 689 . . . . . . . . 9 (suc 𝑣 ⊆ dom 𝐺𝑣 ⊆ dom 𝐺)
4847imim1i 63 . . . . . . . 8 ((𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)) → (suc 𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)))
49 oveq2 7157 . . . . . . . . . . 11 ((𝐻𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣) → (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(𝐻𝑣)) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)))
506seqomsuc 8089 . . . . . . . . . . . . 13 (𝑣 ∈ ω → (𝐻‘suc 𝑣) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(𝐻𝑣)))
5150ad2antrl 727 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → (𝐻‘suc 𝑣) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(𝐻𝑣)))
5218seqomsuc 8089 . . . . . . . . . . . . . 14 (𝑣 ∈ ω → (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘suc 𝑣) = (𝑣(𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)))
5352ad2antrl 727 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘suc 𝑣) = (𝑣(𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)))
54 ssv 3977 . . . . . . . . . . . . . . . 16 dom 𝐺 ⊆ V
55 ssv 3977 . . . . . . . . . . . . . . . 16 On ⊆ V
56 resmpo 7265 . . . . . . . . . . . . . . . 16 ((dom 𝐺 ⊆ V ∧ On ⊆ V) → ((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)) ↾ (dom 𝐺 × On)) = (𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)))
5754, 55, 56mp2an 691 . . . . . . . . . . . . . . 15 ((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)) ↾ (dom 𝐺 × On)) = (𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))
5857oveqi 7162 . . . . . . . . . . . . . 14 (𝑣((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)) ↾ (dom 𝐺 × On))(seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)) = (𝑣(𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣))
59 simprr 772 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → suc 𝑣 ⊆ dom 𝐺)
60 vex 3483 . . . . . . . . . . . . . . . . . 18 𝑣 ∈ V
6160sucid 6257 . . . . . . . . . . . . . . . . 17 𝑣 ∈ suc 𝑣
6261a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → 𝑣 ∈ suc 𝑣)
6359, 62sseldd 3954 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → 𝑣 ∈ dom 𝐺)
6418cantnfvalf 9125 . . . . . . . . . . . . . . . . 17 seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅):ω⟶On
6564ffvelrni 6841 . . . . . . . . . . . . . . . 16 (𝑣 ∈ ω → (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣) ∈ On)
6665ad2antrl 727 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣) ∈ On)
67 ovres 7308 . . . . . . . . . . . . . . 15 ((𝑣 ∈ dom 𝐺 ∧ (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣) ∈ On) → (𝑣((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)) ↾ (dom 𝐺 × On))(seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)))
6863, 66, 67syl2anc 587 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → (𝑣((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)) ↾ (dom 𝐺 × On))(seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)))
6958, 68syl5eqr 2873 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → (𝑣(𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)))
7053, 69eqtrd 2859 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘suc 𝑣) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)))
7151, 70eqeq12d 2840 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → ((𝐻‘suc 𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘suc 𝑣) ↔ (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(𝐻𝑣)) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣))))
7249, 71syl5ibr 249 . . . . . . . . . 10 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → ((𝐻𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣) → (𝐻‘suc 𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘suc 𝑣)))
7372expr 460 . . . . . . . . 9 ((𝜑𝑣 ∈ ω) → (suc 𝑣 ⊆ dom 𝐺 → ((𝐻𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣) → (𝐻‘suc 𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘suc 𝑣))))
7473a2d 29 . . . . . . . 8 ((𝜑𝑣 ∈ ω) → ((suc 𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)) → (suc 𝑣 ⊆ dom 𝐺 → (𝐻‘suc 𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘suc 𝑣))))
7548, 74syl5 34 . . . . . . 7 ((𝜑𝑣 ∈ ω) → ((𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)) → (suc 𝑣 ⊆ dom 𝐺 → (𝐻‘suc 𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘suc 𝑣))))
7675expcom 417 . . . . . 6 (𝑣 ∈ ω → (𝜑 → ((𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)) → (suc 𝑣 ⊆ dom 𝐺 → (𝐻‘suc 𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘suc 𝑣)))))
7776a2d 29 . . . . 5 (𝑣 ∈ ω → ((𝜑 → (𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣))) → (𝜑 → (suc 𝑣 ⊆ dom 𝐺 → (𝐻‘suc 𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘suc 𝑣)))))
7824, 30, 36, 42, 44, 77finds 7603 . . . 4 (dom 𝐺 ∈ ω → (𝜑 → (dom 𝐺 ⊆ dom 𝐺 → (𝐻‘dom 𝐺) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘dom 𝐺))))
7910, 78mpcom 38 . . 3 (𝜑 → (dom 𝐺 ⊆ dom 𝐺 → (𝐻‘dom 𝐺) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘dom 𝐺)))
808, 79mpi 20 . 2 (𝜑 → (𝐻‘dom 𝐺) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘dom 𝐺))
817, 80eqtrd 2859 1 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘dom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  Vcvv 3480  wss 3919  c0 4276   E cep 5451   We wwe 5500   × cxp 5540  dom cdm 5542  cres 5544  Oncon0 6178  suc csuc 6180  cfv 6343  (class class class)co 7149  cmpo 7151  ωcom 7574   supp csupp 7826  seqωcseqom 8079   +o coa 8095   ·o comu 8096  o coe 8097  OrdIsocoi 8970   CNF ccnf 9121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-seqom 8080  df-oadd 8102  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-fsupp 8831  df-oi 8971  df-cnf 9122
This theorem is referenced by:  cantnfres  9137
  Copyright terms: Public domain W3C validator