MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfval2 Structured version   Visualization version   GIF version

Theorem cantnfval2 9427
Description: Alternate expression for the value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfcl.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cantnfcl.f (𝜑𝐹𝑆)
cantnfval.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
Assertion
Ref Expression
cantnfval2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘dom 𝐺))
Distinct variable groups:   𝑧,𝑘,𝐵   𝐴,𝑘,𝑧   𝑘,𝐹,𝑧   𝑆,𝑘,𝑧   𝑘,𝐺,𝑧   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐻(𝑧,𝑘)

Proof of Theorem cantnfval2
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
3 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
4 cantnfcl.g . . 3 𝐺 = OrdIso( E , (𝐹 supp ∅))
5 cantnfcl.f . . 3 (𝜑𝐹𝑆)
6 cantnfval.h . . 3 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
71, 2, 3, 4, 5, 6cantnfval 9426 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝐺))
8 ssid 3943 . . 3 dom 𝐺 ⊆ dom 𝐺
91, 2, 3, 4, 5cantnfcl 9425 . . . . 5 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
109simprd 496 . . . 4 (𝜑 → dom 𝐺 ∈ ω)
11 sseq1 3946 . . . . . . 7 (𝑢 = ∅ → (𝑢 ⊆ dom 𝐺 ↔ ∅ ⊆ dom 𝐺))
12 fveq2 6774 . . . . . . . . 9 (𝑢 = ∅ → (𝐻𝑢) = (𝐻‘∅))
13 0ex 5231 . . . . . . . . . 10 ∅ ∈ V
146seqom0g 8287 . . . . . . . . . 10 (∅ ∈ V → (𝐻‘∅) = ∅)
1513, 14ax-mp 5 . . . . . . . . 9 (𝐻‘∅) = ∅
1612, 15eqtrdi 2794 . . . . . . . 8 (𝑢 = ∅ → (𝐻𝑢) = ∅)
17 fveq2 6774 . . . . . . . . 9 (𝑢 = ∅ → (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘∅))
18 eqid 2738 . . . . . . . . . . 11 seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
1918seqom0g 8287 . . . . . . . . . 10 (∅ ∈ V → (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘∅) = ∅)
2013, 19ax-mp 5 . . . . . . . . 9 (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘∅) = ∅
2117, 20eqtrdi 2794 . . . . . . . 8 (𝑢 = ∅ → (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢) = ∅)
2216, 21eqeq12d 2754 . . . . . . 7 (𝑢 = ∅ → ((𝐻𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢) ↔ ∅ = ∅))
2311, 22imbi12d 345 . . . . . 6 (𝑢 = ∅ → ((𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢)) ↔ (∅ ⊆ dom 𝐺 → ∅ = ∅)))
2423imbi2d 341 . . . . 5 (𝑢 = ∅ → ((𝜑 → (𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢))) ↔ (𝜑 → (∅ ⊆ dom 𝐺 → ∅ = ∅))))
25 sseq1 3946 . . . . . . 7 (𝑢 = 𝑣 → (𝑢 ⊆ dom 𝐺𝑣 ⊆ dom 𝐺))
26 fveq2 6774 . . . . . . . 8 (𝑢 = 𝑣 → (𝐻𝑢) = (𝐻𝑣))
27 fveq2 6774 . . . . . . . 8 (𝑢 = 𝑣 → (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣))
2826, 27eqeq12d 2754 . . . . . . 7 (𝑢 = 𝑣 → ((𝐻𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢) ↔ (𝐻𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)))
2925, 28imbi12d 345 . . . . . 6 (𝑢 = 𝑣 → ((𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢)) ↔ (𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣))))
3029imbi2d 341 . . . . 5 (𝑢 = 𝑣 → ((𝜑 → (𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢))) ↔ (𝜑 → (𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)))))
31 sseq1 3946 . . . . . . 7 (𝑢 = suc 𝑣 → (𝑢 ⊆ dom 𝐺 ↔ suc 𝑣 ⊆ dom 𝐺))
32 fveq2 6774 . . . . . . . 8 (𝑢 = suc 𝑣 → (𝐻𝑢) = (𝐻‘suc 𝑣))
33 fveq2 6774 . . . . . . . 8 (𝑢 = suc 𝑣 → (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘suc 𝑣))
3432, 33eqeq12d 2754 . . . . . . 7 (𝑢 = suc 𝑣 → ((𝐻𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢) ↔ (𝐻‘suc 𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘suc 𝑣)))
3531, 34imbi12d 345 . . . . . 6 (𝑢 = suc 𝑣 → ((𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢)) ↔ (suc 𝑣 ⊆ dom 𝐺 → (𝐻‘suc 𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘suc 𝑣))))
3635imbi2d 341 . . . . 5 (𝑢 = suc 𝑣 → ((𝜑 → (𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢))) ↔ (𝜑 → (suc 𝑣 ⊆ dom 𝐺 → (𝐻‘suc 𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘suc 𝑣)))))
37 sseq1 3946 . . . . . . 7 (𝑢 = dom 𝐺 → (𝑢 ⊆ dom 𝐺 ↔ dom 𝐺 ⊆ dom 𝐺))
38 fveq2 6774 . . . . . . . 8 (𝑢 = dom 𝐺 → (𝐻𝑢) = (𝐻‘dom 𝐺))
39 fveq2 6774 . . . . . . . 8 (𝑢 = dom 𝐺 → (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘dom 𝐺))
4038, 39eqeq12d 2754 . . . . . . 7 (𝑢 = dom 𝐺 → ((𝐻𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢) ↔ (𝐻‘dom 𝐺) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘dom 𝐺)))
4137, 40imbi12d 345 . . . . . 6 (𝑢 = dom 𝐺 → ((𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢)) ↔ (dom 𝐺 ⊆ dom 𝐺 → (𝐻‘dom 𝐺) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘dom 𝐺))))
4241imbi2d 341 . . . . 5 (𝑢 = dom 𝐺 → ((𝜑 → (𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑢))) ↔ (𝜑 → (dom 𝐺 ⊆ dom 𝐺 → (𝐻‘dom 𝐺) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘dom 𝐺)))))
43 eqid 2738 . . . . . 6 ∅ = ∅
44432a1i 12 . . . . 5 (𝜑 → (∅ ⊆ dom 𝐺 → ∅ = ∅))
45 sssucid 6343 . . . . . . . . . 10 𝑣 ⊆ suc 𝑣
46 sstr 3929 . . . . . . . . . 10 ((𝑣 ⊆ suc 𝑣 ∧ suc 𝑣 ⊆ dom 𝐺) → 𝑣 ⊆ dom 𝐺)
4745, 46mpan 687 . . . . . . . . 9 (suc 𝑣 ⊆ dom 𝐺𝑣 ⊆ dom 𝐺)
4847imim1i 63 . . . . . . . 8 ((𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)) → (suc 𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)))
49 oveq2 7283 . . . . . . . . . . 11 ((𝐻𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣) → (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(𝐻𝑣)) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)))
506seqomsuc 8288 . . . . . . . . . . . . 13 (𝑣 ∈ ω → (𝐻‘suc 𝑣) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(𝐻𝑣)))
5150ad2antrl 725 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → (𝐻‘suc 𝑣) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(𝐻𝑣)))
5218seqomsuc 8288 . . . . . . . . . . . . . 14 (𝑣 ∈ ω → (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘suc 𝑣) = (𝑣(𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)))
5352ad2antrl 725 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘suc 𝑣) = (𝑣(𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)))
54 ssv 3945 . . . . . . . . . . . . . . . 16 dom 𝐺 ⊆ V
55 ssv 3945 . . . . . . . . . . . . . . . 16 On ⊆ V
56 resmpo 7394 . . . . . . . . . . . . . . . 16 ((dom 𝐺 ⊆ V ∧ On ⊆ V) → ((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)) ↾ (dom 𝐺 × On)) = (𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)))
5754, 55, 56mp2an 689 . . . . . . . . . . . . . . 15 ((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)) ↾ (dom 𝐺 × On)) = (𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))
5857oveqi 7288 . . . . . . . . . . . . . 14 (𝑣((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)) ↾ (dom 𝐺 × On))(seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)) = (𝑣(𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣))
59 simprr 770 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → suc 𝑣 ⊆ dom 𝐺)
60 vex 3436 . . . . . . . . . . . . . . . . . 18 𝑣 ∈ V
6160sucid 6345 . . . . . . . . . . . . . . . . 17 𝑣 ∈ suc 𝑣
6261a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → 𝑣 ∈ suc 𝑣)
6359, 62sseldd 3922 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → 𝑣 ∈ dom 𝐺)
6418cantnfvalf 9423 . . . . . . . . . . . . . . . . 17 seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅):ω⟶On
6564ffvelrni 6960 . . . . . . . . . . . . . . . 16 (𝑣 ∈ ω → (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣) ∈ On)
6665ad2antrl 725 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣) ∈ On)
67 ovres 7438 . . . . . . . . . . . . . . 15 ((𝑣 ∈ dom 𝐺 ∧ (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣) ∈ On) → (𝑣((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)) ↾ (dom 𝐺 × On))(seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)))
6863, 66, 67syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → (𝑣((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)) ↾ (dom 𝐺 × On))(seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)))
6958, 68eqtr3id 2792 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → (𝑣(𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)))
7053, 69eqtrd 2778 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘suc 𝑣) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)))
7151, 70eqeq12d 2754 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → ((𝐻‘suc 𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘suc 𝑣) ↔ (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(𝐻𝑣)) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣))))
7249, 71syl5ibr 245 . . . . . . . . . 10 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → ((𝐻𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣) → (𝐻‘suc 𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘suc 𝑣)))
7372expr 457 . . . . . . . . 9 ((𝜑𝑣 ∈ ω) → (suc 𝑣 ⊆ dom 𝐺 → ((𝐻𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣) → (𝐻‘suc 𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘suc 𝑣))))
7473a2d 29 . . . . . . . 8 ((𝜑𝑣 ∈ ω) → ((suc 𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)) → (suc 𝑣 ⊆ dom 𝐺 → (𝐻‘suc 𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘suc 𝑣))))
7548, 74syl5 34 . . . . . . 7 ((𝜑𝑣 ∈ ω) → ((𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)) → (suc 𝑣 ⊆ dom 𝐺 → (𝐻‘suc 𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘suc 𝑣))))
7675expcom 414 . . . . . 6 (𝑣 ∈ ω → (𝜑 → ((𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣)) → (suc 𝑣 ⊆ dom 𝐺 → (𝐻‘suc 𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘suc 𝑣)))))
7776a2d 29 . . . . 5 (𝑣 ∈ ω → ((𝜑 → (𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘𝑣))) → (𝜑 → (suc 𝑣 ⊆ dom 𝐺 → (𝐻‘suc 𝑣) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘suc 𝑣)))))
7824, 30, 36, 42, 44, 77finds 7745 . . . 4 (dom 𝐺 ∈ ω → (𝜑 → (dom 𝐺 ⊆ dom 𝐺 → (𝐻‘dom 𝐺) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘dom 𝐺))))
7910, 78mpcom 38 . . 3 (𝜑 → (dom 𝐺 ⊆ dom 𝐺 → (𝐻‘dom 𝐺) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘dom 𝐺)))
808, 79mpi 20 . 2 (𝜑 → (𝐻‘dom 𝐺) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘dom 𝐺))
817, 80eqtrd 2778 1 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)‘dom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  c0 4256   E cep 5494   We wwe 5543   × cxp 5587  dom cdm 5589  cres 5591  Oncon0 6266  suc csuc 6268  cfv 6433  (class class class)co 7275  cmpo 7277  ωcom 7712   supp csupp 7977  seqωcseqom 8278   +o coa 8294   ·o comu 8295  o coe 8296  OrdIsocoi 9268   CNF ccnf 9419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-seqom 8279  df-1o 8297  df-oadd 8301  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-cnf 9420
This theorem is referenced by:  cantnfres  9435
  Copyright terms: Public domain W3C validator