Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpnord Structured version   Visualization version   GIF version

Theorem cpnord 24524
 Description: 𝓑C𝑛 conditions are ordered by strength. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
cpnord ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → ((𝓑C𝑛𝑆)‘𝑁) ⊆ ((𝓑C𝑛𝑆)‘𝑀))

Proof of Theorem cpnord
Dummy variables 𝑓 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6663 . . . . . 6 (𝑛 = 𝑀 → ((𝓑C𝑛𝑆)‘𝑛) = ((𝓑C𝑛𝑆)‘𝑀))
21sseq1d 3996 . . . . 5 (𝑛 = 𝑀 → (((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀) ↔ ((𝓑C𝑛𝑆)‘𝑀) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
32imbi2d 343 . . . 4 (𝑛 = 𝑀 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀)) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑀) ⊆ ((𝓑C𝑛𝑆)‘𝑀))))
4 fveq2 6663 . . . . . 6 (𝑛 = 𝑚 → ((𝓑C𝑛𝑆)‘𝑛) = ((𝓑C𝑛𝑆)‘𝑚))
54sseq1d 3996 . . . . 5 (𝑛 = 𝑚 → (((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀) ↔ ((𝓑C𝑛𝑆)‘𝑚) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
65imbi2d 343 . . . 4 (𝑛 = 𝑚 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀)) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑚) ⊆ ((𝓑C𝑛𝑆)‘𝑀))))
7 fveq2 6663 . . . . . 6 (𝑛 = (𝑚 + 1) → ((𝓑C𝑛𝑆)‘𝑛) = ((𝓑C𝑛𝑆)‘(𝑚 + 1)))
87sseq1d 3996 . . . . 5 (𝑛 = (𝑚 + 1) → (((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀) ↔ ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
98imbi2d 343 . . . 4 (𝑛 = (𝑚 + 1) → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀)) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑀))))
10 fveq2 6663 . . . . . 6 (𝑛 = 𝑁 → ((𝓑C𝑛𝑆)‘𝑛) = ((𝓑C𝑛𝑆)‘𝑁))
1110sseq1d 3996 . . . . 5 (𝑛 = 𝑁 → (((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀) ↔ ((𝓑C𝑛𝑆)‘𝑁) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
1211imbi2d 343 . . . 4 (𝑛 = 𝑁 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀)) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑁) ⊆ ((𝓑C𝑛𝑆)‘𝑀))))
13 ssid 3987 . . . . 5 ((𝓑C𝑛𝑆)‘𝑀) ⊆ ((𝓑C𝑛𝑆)‘𝑀)
14132a1i 12 . . . 4 (𝑀 ∈ ℤ → ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑀) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
15 simprl 769 . . . . . . . . . . 11 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → 𝑓 ∈ (ℂ ↑pm 𝑆))
16 recnprss 24494 . . . . . . . . . . . . . 14 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
1716ad2antrr 724 . . . . . . . . . . . . 13 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → 𝑆 ⊆ ℂ)
1817adantr 483 . . . . . . . . . . . 12 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → 𝑆 ⊆ ℂ)
19 simplll 773 . . . . . . . . . . . . . 14 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → 𝑆 ∈ {ℝ, ℂ})
20 eluznn0 12309 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ ℕ0)
2120adantll 712 . . . . . . . . . . . . . . 15 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ ℕ0)
2221adantr 483 . . . . . . . . . . . . . 14 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → 𝑚 ∈ ℕ0)
23 dvnf 24516 . . . . . . . . . . . . . 14 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑓 ∈ (ℂ ↑pm 𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑆 D𝑛 𝑓)‘𝑚):dom ((𝑆 D𝑛 𝑓)‘𝑚)⟶ℂ)
2419, 15, 22, 23syl3anc 1365 . . . . . . . . . . . . 13 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘𝑚):dom ((𝑆 D𝑛 𝑓)‘𝑚)⟶ℂ)
25 dvnbss 24517 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑓 ∈ (ℂ ↑pm 𝑆) ∧ 𝑚 ∈ ℕ0) → dom ((𝑆 D𝑛 𝑓)‘𝑚) ⊆ dom 𝑓)
2619, 15, 22, 25syl3anc 1365 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom ((𝑆 D𝑛 𝑓)‘𝑚) ⊆ dom 𝑓)
27 dvnp1 24514 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ⊆ ℂ ∧ 𝑓 ∈ (ℂ ↑pm 𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) = (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)))
2818, 15, 22, 27syl3anc 1365 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) = (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)))
29 simprr 771 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))
3028, 29eqeltrrd 2912 . . . . . . . . . . . . . . . . . 18 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) ∈ (dom 𝑓cn→ℂ))
31 cncff 23493 . . . . . . . . . . . . . . . . . 18 ((𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) ∈ (dom 𝑓cn→ℂ) → (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)):dom 𝑓⟶ℂ)
3230, 31syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)):dom 𝑓⟶ℂ)
3332fdmd 6516 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) = dom 𝑓)
34 cnex 10610 . . . . . . . . . . . . . . . . . . . . 21 ℂ ∈ V
35 elpm2g 8415 . . . . . . . . . . . . . . . . . . . . 21 ((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) → (𝑓 ∈ (ℂ ↑pm 𝑆) ↔ (𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓𝑆)))
3634, 19, 35sylancr 589 . . . . . . . . . . . . . . . . . . . 20 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (𝑓 ∈ (ℂ ↑pm 𝑆) ↔ (𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓𝑆)))
3715, 36mpbid 234 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓𝑆))
3837simprd 498 . . . . . . . . . . . . . . . . . 18 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom 𝑓𝑆)
3926, 38sstrd 3975 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom ((𝑆 D𝑛 𝑓)‘𝑚) ⊆ 𝑆)
4018, 24, 39dvbss 24491 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) ⊆ dom ((𝑆 D𝑛 𝑓)‘𝑚))
4133, 40eqsstrrd 4004 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom 𝑓 ⊆ dom ((𝑆 D𝑛 𝑓)‘𝑚))
4226, 41eqssd 3982 . . . . . . . . . . . . . 14 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom ((𝑆 D𝑛 𝑓)‘𝑚) = dom 𝑓)
4342feq2d 6493 . . . . . . . . . . . . 13 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (((𝑆 D𝑛 𝑓)‘𝑚):dom ((𝑆 D𝑛 𝑓)‘𝑚)⟶ℂ ↔ ((𝑆 D𝑛 𝑓)‘𝑚):dom 𝑓⟶ℂ))
4424, 43mpbid 234 . . . . . . . . . . . 12 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘𝑚):dom 𝑓⟶ℂ)
45 dvcn 24510 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ ((𝑆 D𝑛 𝑓)‘𝑚):dom 𝑓⟶ℂ ∧ dom 𝑓𝑆) ∧ dom (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) = dom 𝑓) → ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ))
4618, 44, 38, 33, 45syl31anc 1367 . . . . . . . . . . 11 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ))
4715, 46jca 514 . . . . . . . . . 10 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ)))
4847ex 415 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ)) → (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ))))
49 peano2nn0 11929 . . . . . . . . . . 11 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ0)
5021, 49syl 17 . . . . . . . . . 10 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → (𝑚 + 1) ∈ ℕ0)
51 elcpn 24523 . . . . . . . . . 10 ((𝑆 ⊆ ℂ ∧ (𝑚 + 1) ∈ ℕ0) → (𝑓 ∈ ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ↔ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))))
5217, 50, 51syl2anc 586 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → (𝑓 ∈ ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ↔ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))))
53 elcpn 24523 . . . . . . . . . 10 ((𝑆 ⊆ ℂ ∧ 𝑚 ∈ ℕ0) → (𝑓 ∈ ((𝓑C𝑛𝑆)‘𝑚) ↔ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ))))
5417, 21, 53syl2anc 586 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → (𝑓 ∈ ((𝓑C𝑛𝑆)‘𝑚) ↔ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ))))
5548, 52, 543imtr4d 296 . . . . . . . 8 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → (𝑓 ∈ ((𝓑C𝑛𝑆)‘(𝑚 + 1)) → 𝑓 ∈ ((𝓑C𝑛𝑆)‘𝑚)))
5655ssrdv 3971 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑚))
57 sstr2 3972 . . . . . . 7 (((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑚) → (((𝓑C𝑛𝑆)‘𝑚) ⊆ ((𝓑C𝑛𝑆)‘𝑀) → ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
5856, 57syl 17 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → (((𝓑C𝑛𝑆)‘𝑚) ⊆ ((𝓑C𝑛𝑆)‘𝑀) → ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
5958expcom 416 . . . . 5 (𝑚 ∈ (ℤ𝑀) → ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → (((𝓑C𝑛𝑆)‘𝑚) ⊆ ((𝓑C𝑛𝑆)‘𝑀) → ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑀))))
6059a2d 29 . . . 4 (𝑚 ∈ (ℤ𝑀) → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑚) ⊆ ((𝓑C𝑛𝑆)‘𝑀)) → ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑀))))
613, 6, 9, 12, 14, 60uzind4 12298 . . 3 (𝑁 ∈ (ℤ𝑀) → ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑁) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
6261com12 32 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ (ℤ𝑀) → ((𝓑C𝑛𝑆)‘𝑁) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
63623impia 1111 1 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → ((𝓑C𝑛𝑆)‘𝑁) ⊆ ((𝓑C𝑛𝑆)‘𝑀))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107  Vcvv 3493   ⊆ wss 3934  {cpr 4561  dom cdm 5548  ⟶wf 6344  ‘cfv 6348  (class class class)co 7148   ↑pm cpm 8399  ℂcc 10527  ℝcr 10528  1c1 10530   + caddc 10532  ℕ0cn0 11889  ℤcz 11973  ℤ≥cuz 12235  –cn→ccncf 23476   D cdv 24453   D𝑛 cdvn 24454  𝓑C𝑛ccpn 24455 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-icc 12737  df-fz 12885  df-fzo 13026  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20529  df-xmet 20530  df-met 20531  df-bl 20532  df-mopn 20533  df-fbas 20534  df-fg 20535  df-cnfld 20538  df-top 21494  df-topon 21511  df-topsp 21533  df-bases 21546  df-cld 21619  df-ntr 21620  df-cls 21621  df-nei 21698  df-lp 21736  df-perf 21737  df-cn 21827  df-cnp 21828  df-haus 21915  df-tx 22162  df-hmeo 22355  df-fil 22446  df-fm 22538  df-flim 22539  df-flf 22540  df-xms 22922  df-ms 22923  df-tms 22924  df-cncf 23478  df-limc 24456  df-dv 24457  df-dvn 24458  df-cpn 24459 This theorem is referenced by:  cpncn  24525  c1lip2  24587
 Copyright terms: Public domain W3C validator