MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpnord Structured version   Visualization version   GIF version

Theorem cpnord 25870
Description: 𝓑C𝑛 conditions are ordered by strength. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
cpnord ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → ((𝓑C𝑛𝑆)‘𝑁) ⊆ ((𝓑C𝑛𝑆)‘𝑀))

Proof of Theorem cpnord
Dummy variables 𝑓 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6828 . . . . . 6 (𝑛 = 𝑀 → ((𝓑C𝑛𝑆)‘𝑛) = ((𝓑C𝑛𝑆)‘𝑀))
21sseq1d 3961 . . . . 5 (𝑛 = 𝑀 → (((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀) ↔ ((𝓑C𝑛𝑆)‘𝑀) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
32imbi2d 340 . . . 4 (𝑛 = 𝑀 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀)) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑀) ⊆ ((𝓑C𝑛𝑆)‘𝑀))))
4 fveq2 6828 . . . . . 6 (𝑛 = 𝑚 → ((𝓑C𝑛𝑆)‘𝑛) = ((𝓑C𝑛𝑆)‘𝑚))
54sseq1d 3961 . . . . 5 (𝑛 = 𝑚 → (((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀) ↔ ((𝓑C𝑛𝑆)‘𝑚) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
65imbi2d 340 . . . 4 (𝑛 = 𝑚 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀)) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑚) ⊆ ((𝓑C𝑛𝑆)‘𝑀))))
7 fveq2 6828 . . . . . 6 (𝑛 = (𝑚 + 1) → ((𝓑C𝑛𝑆)‘𝑛) = ((𝓑C𝑛𝑆)‘(𝑚 + 1)))
87sseq1d 3961 . . . . 5 (𝑛 = (𝑚 + 1) → (((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀) ↔ ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
98imbi2d 340 . . . 4 (𝑛 = (𝑚 + 1) → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀)) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑀))))
10 fveq2 6828 . . . . . 6 (𝑛 = 𝑁 → ((𝓑C𝑛𝑆)‘𝑛) = ((𝓑C𝑛𝑆)‘𝑁))
1110sseq1d 3961 . . . . 5 (𝑛 = 𝑁 → (((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀) ↔ ((𝓑C𝑛𝑆)‘𝑁) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
1211imbi2d 340 . . . 4 (𝑛 = 𝑁 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀)) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑁) ⊆ ((𝓑C𝑛𝑆)‘𝑀))))
13 ssid 3952 . . . . 5 ((𝓑C𝑛𝑆)‘𝑀) ⊆ ((𝓑C𝑛𝑆)‘𝑀)
14132a1i 12 . . . 4 (𝑀 ∈ ℤ → ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑀) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
15 simprl 770 . . . . . . . . . . 11 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → 𝑓 ∈ (ℂ ↑pm 𝑆))
16 recnprss 25838 . . . . . . . . . . . . . 14 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
1716ad2antrr 726 . . . . . . . . . . . . 13 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → 𝑆 ⊆ ℂ)
1817adantr 480 . . . . . . . . . . . 12 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → 𝑆 ⊆ ℂ)
19 simplll 774 . . . . . . . . . . . . . 14 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → 𝑆 ∈ {ℝ, ℂ})
20 eluznn0 12821 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ ℕ0)
2120adantll 714 . . . . . . . . . . . . . . 15 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ ℕ0)
2221adantr 480 . . . . . . . . . . . . . 14 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → 𝑚 ∈ ℕ0)
23 dvnf 25862 . . . . . . . . . . . . . 14 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑓 ∈ (ℂ ↑pm 𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑆 D𝑛 𝑓)‘𝑚):dom ((𝑆 D𝑛 𝑓)‘𝑚)⟶ℂ)
2419, 15, 22, 23syl3anc 1373 . . . . . . . . . . . . 13 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘𝑚):dom ((𝑆 D𝑛 𝑓)‘𝑚)⟶ℂ)
25 dvnbss 25863 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑓 ∈ (ℂ ↑pm 𝑆) ∧ 𝑚 ∈ ℕ0) → dom ((𝑆 D𝑛 𝑓)‘𝑚) ⊆ dom 𝑓)
2619, 15, 22, 25syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom ((𝑆 D𝑛 𝑓)‘𝑚) ⊆ dom 𝑓)
27 dvnp1 25860 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ⊆ ℂ ∧ 𝑓 ∈ (ℂ ↑pm 𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) = (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)))
2818, 15, 22, 27syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) = (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)))
29 simprr 772 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))
3028, 29eqeltrrd 2832 . . . . . . . . . . . . . . . . . 18 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) ∈ (dom 𝑓cn→ℂ))
31 cncff 24819 . . . . . . . . . . . . . . . . . 18 ((𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) ∈ (dom 𝑓cn→ℂ) → (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)):dom 𝑓⟶ℂ)
3230, 31syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)):dom 𝑓⟶ℂ)
3332fdmd 6667 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) = dom 𝑓)
34 cnex 11093 . . . . . . . . . . . . . . . . . . . . 21 ℂ ∈ V
35 elpm2g 8774 . . . . . . . . . . . . . . . . . . . . 21 ((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) → (𝑓 ∈ (ℂ ↑pm 𝑆) ↔ (𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓𝑆)))
3634, 19, 35sylancr 587 . . . . . . . . . . . . . . . . . . . 20 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (𝑓 ∈ (ℂ ↑pm 𝑆) ↔ (𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓𝑆)))
3715, 36mpbid 232 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓𝑆))
3837simprd 495 . . . . . . . . . . . . . . . . . 18 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom 𝑓𝑆)
3926, 38sstrd 3940 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom ((𝑆 D𝑛 𝑓)‘𝑚) ⊆ 𝑆)
4018, 24, 39dvbss 25835 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) ⊆ dom ((𝑆 D𝑛 𝑓)‘𝑚))
4133, 40eqsstrrd 3965 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom 𝑓 ⊆ dom ((𝑆 D𝑛 𝑓)‘𝑚))
4226, 41eqssd 3947 . . . . . . . . . . . . . 14 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom ((𝑆 D𝑛 𝑓)‘𝑚) = dom 𝑓)
4342feq2d 6641 . . . . . . . . . . . . 13 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (((𝑆 D𝑛 𝑓)‘𝑚):dom ((𝑆 D𝑛 𝑓)‘𝑚)⟶ℂ ↔ ((𝑆 D𝑛 𝑓)‘𝑚):dom 𝑓⟶ℂ))
4424, 43mpbid 232 . . . . . . . . . . . 12 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘𝑚):dom 𝑓⟶ℂ)
45 dvcn 25856 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ ((𝑆 D𝑛 𝑓)‘𝑚):dom 𝑓⟶ℂ ∧ dom 𝑓𝑆) ∧ dom (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) = dom 𝑓) → ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ))
4618, 44, 38, 33, 45syl31anc 1375 . . . . . . . . . . 11 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ))
4715, 46jca 511 . . . . . . . . . 10 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ)))
4847ex 412 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ)) → (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ))))
49 peano2nn0 12427 . . . . . . . . . . 11 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ0)
5021, 49syl 17 . . . . . . . . . 10 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → (𝑚 + 1) ∈ ℕ0)
51 elcpn 25869 . . . . . . . . . 10 ((𝑆 ⊆ ℂ ∧ (𝑚 + 1) ∈ ℕ0) → (𝑓 ∈ ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ↔ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))))
5217, 50, 51syl2anc 584 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → (𝑓 ∈ ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ↔ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))))
53 elcpn 25869 . . . . . . . . . 10 ((𝑆 ⊆ ℂ ∧ 𝑚 ∈ ℕ0) → (𝑓 ∈ ((𝓑C𝑛𝑆)‘𝑚) ↔ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ))))
5417, 21, 53syl2anc 584 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → (𝑓 ∈ ((𝓑C𝑛𝑆)‘𝑚) ↔ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ))))
5548, 52, 543imtr4d 294 . . . . . . . 8 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → (𝑓 ∈ ((𝓑C𝑛𝑆)‘(𝑚 + 1)) → 𝑓 ∈ ((𝓑C𝑛𝑆)‘𝑚)))
5655ssrdv 3935 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑚))
57 sstr2 3936 . . . . . . 7 (((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑚) → (((𝓑C𝑛𝑆)‘𝑚) ⊆ ((𝓑C𝑛𝑆)‘𝑀) → ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
5856, 57syl 17 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → (((𝓑C𝑛𝑆)‘𝑚) ⊆ ((𝓑C𝑛𝑆)‘𝑀) → ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
5958expcom 413 . . . . 5 (𝑚 ∈ (ℤ𝑀) → ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → (((𝓑C𝑛𝑆)‘𝑚) ⊆ ((𝓑C𝑛𝑆)‘𝑀) → ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑀))))
6059a2d 29 . . . 4 (𝑚 ∈ (ℤ𝑀) → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑚) ⊆ ((𝓑C𝑛𝑆)‘𝑀)) → ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑀))))
613, 6, 9, 12, 14, 60uzind4 12810 . . 3 (𝑁 ∈ (ℤ𝑀) → ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑁) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
6261com12 32 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ (ℤ𝑀) → ((𝓑C𝑛𝑆)‘𝑁) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
63623impia 1117 1 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → ((𝓑C𝑛𝑆)‘𝑁) ⊆ ((𝓑C𝑛𝑆)‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897  {cpr 4577  dom cdm 5619  wf 6483  cfv 6487  (class class class)co 7352  pm cpm 8757  cc 11010  cr 11011  1c1 11013   + caddc 11015  0cn0 12387  cz 12474  cuz 12738  cnccncf 24802   D cdv 25797   D𝑛 cdvn 25798  𝓑C𝑛ccpn 25799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9537  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-pre-sup 11090  ax-addf 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-isom 6496  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-7 12199  df-8 12200  df-9 12201  df-n0 12388  df-z 12475  df-dec 12595  df-uz 12739  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-icc 13258  df-fz 13414  df-fzo 13561  df-seq 13915  df-exp 13975  df-hash 14244  df-cj 15012  df-re 15013  df-im 15014  df-sqrt 15148  df-abs 15149  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-mulr 17181  df-starv 17182  df-sca 17183  df-vsca 17184  df-ip 17185  df-tset 17186  df-ple 17187  df-ds 17189  df-unif 17190  df-hom 17191  df-cco 17192  df-rest 17332  df-topn 17333  df-0g 17351  df-gsum 17352  df-topgen 17353  df-pt 17354  df-prds 17357  df-xrs 17412  df-qtop 17417  df-imas 17418  df-xps 17420  df-mre 17494  df-mrc 17495  df-acs 17497  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-submnd 18698  df-mulg 18987  df-cntz 19235  df-cmn 19700  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-fbas 21294  df-fg 21295  df-cnfld 21298  df-top 22815  df-topon 22832  df-topsp 22854  df-bases 22867  df-cld 22940  df-ntr 22941  df-cls 22942  df-nei 23019  df-lp 23057  df-perf 23058  df-cn 23148  df-cnp 23149  df-haus 23236  df-tx 23483  df-hmeo 23676  df-fil 23767  df-fm 23859  df-flim 23860  df-flf 23861  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801  df-dvn 25802  df-cpn 25803
This theorem is referenced by:  cpncn  25871  c1lip2  25936
  Copyright terms: Public domain W3C validator