MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpnord Structured version   Visualization version   GIF version

Theorem cpnord 25004
Description: 𝓑C𝑛 conditions are ordered by strength. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
cpnord ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → ((𝓑C𝑛𝑆)‘𝑁) ⊆ ((𝓑C𝑛𝑆)‘𝑀))

Proof of Theorem cpnord
Dummy variables 𝑓 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . . . 6 (𝑛 = 𝑀 → ((𝓑C𝑛𝑆)‘𝑛) = ((𝓑C𝑛𝑆)‘𝑀))
21sseq1d 3948 . . . . 5 (𝑛 = 𝑀 → (((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀) ↔ ((𝓑C𝑛𝑆)‘𝑀) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
32imbi2d 340 . . . 4 (𝑛 = 𝑀 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀)) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑀) ⊆ ((𝓑C𝑛𝑆)‘𝑀))))
4 fveq2 6756 . . . . . 6 (𝑛 = 𝑚 → ((𝓑C𝑛𝑆)‘𝑛) = ((𝓑C𝑛𝑆)‘𝑚))
54sseq1d 3948 . . . . 5 (𝑛 = 𝑚 → (((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀) ↔ ((𝓑C𝑛𝑆)‘𝑚) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
65imbi2d 340 . . . 4 (𝑛 = 𝑚 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀)) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑚) ⊆ ((𝓑C𝑛𝑆)‘𝑀))))
7 fveq2 6756 . . . . . 6 (𝑛 = (𝑚 + 1) → ((𝓑C𝑛𝑆)‘𝑛) = ((𝓑C𝑛𝑆)‘(𝑚 + 1)))
87sseq1d 3948 . . . . 5 (𝑛 = (𝑚 + 1) → (((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀) ↔ ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
98imbi2d 340 . . . 4 (𝑛 = (𝑚 + 1) → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀)) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑀))))
10 fveq2 6756 . . . . . 6 (𝑛 = 𝑁 → ((𝓑C𝑛𝑆)‘𝑛) = ((𝓑C𝑛𝑆)‘𝑁))
1110sseq1d 3948 . . . . 5 (𝑛 = 𝑁 → (((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀) ↔ ((𝓑C𝑛𝑆)‘𝑁) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
1211imbi2d 340 . . . 4 (𝑛 = 𝑁 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀)) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑁) ⊆ ((𝓑C𝑛𝑆)‘𝑀))))
13 ssid 3939 . . . . 5 ((𝓑C𝑛𝑆)‘𝑀) ⊆ ((𝓑C𝑛𝑆)‘𝑀)
14132a1i 12 . . . 4 (𝑀 ∈ ℤ → ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑀) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
15 simprl 767 . . . . . . . . . . 11 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → 𝑓 ∈ (ℂ ↑pm 𝑆))
16 recnprss 24973 . . . . . . . . . . . . . 14 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
1716ad2antrr 722 . . . . . . . . . . . . 13 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → 𝑆 ⊆ ℂ)
1817adantr 480 . . . . . . . . . . . 12 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → 𝑆 ⊆ ℂ)
19 simplll 771 . . . . . . . . . . . . . 14 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → 𝑆 ∈ {ℝ, ℂ})
20 eluznn0 12586 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ ℕ0)
2120adantll 710 . . . . . . . . . . . . . . 15 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ ℕ0)
2221adantr 480 . . . . . . . . . . . . . 14 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → 𝑚 ∈ ℕ0)
23 dvnf 24996 . . . . . . . . . . . . . 14 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑓 ∈ (ℂ ↑pm 𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑆 D𝑛 𝑓)‘𝑚):dom ((𝑆 D𝑛 𝑓)‘𝑚)⟶ℂ)
2419, 15, 22, 23syl3anc 1369 . . . . . . . . . . . . 13 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘𝑚):dom ((𝑆 D𝑛 𝑓)‘𝑚)⟶ℂ)
25 dvnbss 24997 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑓 ∈ (ℂ ↑pm 𝑆) ∧ 𝑚 ∈ ℕ0) → dom ((𝑆 D𝑛 𝑓)‘𝑚) ⊆ dom 𝑓)
2619, 15, 22, 25syl3anc 1369 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom ((𝑆 D𝑛 𝑓)‘𝑚) ⊆ dom 𝑓)
27 dvnp1 24994 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ⊆ ℂ ∧ 𝑓 ∈ (ℂ ↑pm 𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) = (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)))
2818, 15, 22, 27syl3anc 1369 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) = (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)))
29 simprr 769 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))
3028, 29eqeltrrd 2840 . . . . . . . . . . . . . . . . . 18 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) ∈ (dom 𝑓cn→ℂ))
31 cncff 23962 . . . . . . . . . . . . . . . . . 18 ((𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) ∈ (dom 𝑓cn→ℂ) → (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)):dom 𝑓⟶ℂ)
3230, 31syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)):dom 𝑓⟶ℂ)
3332fdmd 6595 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) = dom 𝑓)
34 cnex 10883 . . . . . . . . . . . . . . . . . . . . 21 ℂ ∈ V
35 elpm2g 8590 . . . . . . . . . . . . . . . . . . . . 21 ((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) → (𝑓 ∈ (ℂ ↑pm 𝑆) ↔ (𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓𝑆)))
3634, 19, 35sylancr 586 . . . . . . . . . . . . . . . . . . . 20 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (𝑓 ∈ (ℂ ↑pm 𝑆) ↔ (𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓𝑆)))
3715, 36mpbid 231 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓𝑆))
3837simprd 495 . . . . . . . . . . . . . . . . . 18 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom 𝑓𝑆)
3926, 38sstrd 3927 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom ((𝑆 D𝑛 𝑓)‘𝑚) ⊆ 𝑆)
4018, 24, 39dvbss 24970 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) ⊆ dom ((𝑆 D𝑛 𝑓)‘𝑚))
4133, 40eqsstrrd 3956 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom 𝑓 ⊆ dom ((𝑆 D𝑛 𝑓)‘𝑚))
4226, 41eqssd 3934 . . . . . . . . . . . . . 14 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom ((𝑆 D𝑛 𝑓)‘𝑚) = dom 𝑓)
4342feq2d 6570 . . . . . . . . . . . . 13 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (((𝑆 D𝑛 𝑓)‘𝑚):dom ((𝑆 D𝑛 𝑓)‘𝑚)⟶ℂ ↔ ((𝑆 D𝑛 𝑓)‘𝑚):dom 𝑓⟶ℂ))
4424, 43mpbid 231 . . . . . . . . . . . 12 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘𝑚):dom 𝑓⟶ℂ)
45 dvcn 24990 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ ((𝑆 D𝑛 𝑓)‘𝑚):dom 𝑓⟶ℂ ∧ dom 𝑓𝑆) ∧ dom (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) = dom 𝑓) → ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ))
4618, 44, 38, 33, 45syl31anc 1371 . . . . . . . . . . 11 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ))
4715, 46jca 511 . . . . . . . . . 10 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ)))
4847ex 412 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ)) → (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ))))
49 peano2nn0 12203 . . . . . . . . . . 11 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ0)
5021, 49syl 17 . . . . . . . . . 10 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → (𝑚 + 1) ∈ ℕ0)
51 elcpn 25003 . . . . . . . . . 10 ((𝑆 ⊆ ℂ ∧ (𝑚 + 1) ∈ ℕ0) → (𝑓 ∈ ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ↔ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))))
5217, 50, 51syl2anc 583 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → (𝑓 ∈ ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ↔ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))))
53 elcpn 25003 . . . . . . . . . 10 ((𝑆 ⊆ ℂ ∧ 𝑚 ∈ ℕ0) → (𝑓 ∈ ((𝓑C𝑛𝑆)‘𝑚) ↔ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ))))
5417, 21, 53syl2anc 583 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → (𝑓 ∈ ((𝓑C𝑛𝑆)‘𝑚) ↔ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ))))
5548, 52, 543imtr4d 293 . . . . . . . 8 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → (𝑓 ∈ ((𝓑C𝑛𝑆)‘(𝑚 + 1)) → 𝑓 ∈ ((𝓑C𝑛𝑆)‘𝑚)))
5655ssrdv 3923 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑚))
57 sstr2 3924 . . . . . . 7 (((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑚) → (((𝓑C𝑛𝑆)‘𝑚) ⊆ ((𝓑C𝑛𝑆)‘𝑀) → ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
5856, 57syl 17 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → (((𝓑C𝑛𝑆)‘𝑚) ⊆ ((𝓑C𝑛𝑆)‘𝑀) → ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
5958expcom 413 . . . . 5 (𝑚 ∈ (ℤ𝑀) → ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → (((𝓑C𝑛𝑆)‘𝑚) ⊆ ((𝓑C𝑛𝑆)‘𝑀) → ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑀))))
6059a2d 29 . . . 4 (𝑚 ∈ (ℤ𝑀) → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑚) ⊆ ((𝓑C𝑛𝑆)‘𝑀)) → ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑀))))
613, 6, 9, 12, 14, 60uzind4 12575 . . 3 (𝑁 ∈ (ℤ𝑀) → ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑁) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
6261com12 32 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ (ℤ𝑀) → ((𝓑C𝑛𝑆)‘𝑁) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
63623impia 1115 1 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → ((𝓑C𝑛𝑆)‘𝑁) ⊆ ((𝓑C𝑛𝑆)‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  {cpr 4560  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  pm cpm 8574  cc 10800  cr 10801  1c1 10803   + caddc 10805  0cn0 12163  cz 12249  cuz 12511  cnccncf 23945   D cdv 24932   D𝑛 cdvn 24933  𝓑C𝑛ccpn 24934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-dvn 24937  df-cpn 24938
This theorem is referenced by:  cpncn  25005  c1lip2  25067
  Copyright terms: Public domain W3C validator