MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpnord Structured version   Visualization version   GIF version

Theorem cpnord 25986
Description: 𝓑C𝑛 conditions are ordered by strength. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
cpnord ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → ((𝓑C𝑛𝑆)‘𝑁) ⊆ ((𝓑C𝑛𝑆)‘𝑀))

Proof of Theorem cpnord
Dummy variables 𝑓 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6907 . . . . . 6 (𝑛 = 𝑀 → ((𝓑C𝑛𝑆)‘𝑛) = ((𝓑C𝑛𝑆)‘𝑀))
21sseq1d 4027 . . . . 5 (𝑛 = 𝑀 → (((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀) ↔ ((𝓑C𝑛𝑆)‘𝑀) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
32imbi2d 340 . . . 4 (𝑛 = 𝑀 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀)) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑀) ⊆ ((𝓑C𝑛𝑆)‘𝑀))))
4 fveq2 6907 . . . . . 6 (𝑛 = 𝑚 → ((𝓑C𝑛𝑆)‘𝑛) = ((𝓑C𝑛𝑆)‘𝑚))
54sseq1d 4027 . . . . 5 (𝑛 = 𝑚 → (((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀) ↔ ((𝓑C𝑛𝑆)‘𝑚) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
65imbi2d 340 . . . 4 (𝑛 = 𝑚 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀)) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑚) ⊆ ((𝓑C𝑛𝑆)‘𝑀))))
7 fveq2 6907 . . . . . 6 (𝑛 = (𝑚 + 1) → ((𝓑C𝑛𝑆)‘𝑛) = ((𝓑C𝑛𝑆)‘(𝑚 + 1)))
87sseq1d 4027 . . . . 5 (𝑛 = (𝑚 + 1) → (((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀) ↔ ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
98imbi2d 340 . . . 4 (𝑛 = (𝑚 + 1) → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀)) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑀))))
10 fveq2 6907 . . . . . 6 (𝑛 = 𝑁 → ((𝓑C𝑛𝑆)‘𝑛) = ((𝓑C𝑛𝑆)‘𝑁))
1110sseq1d 4027 . . . . 5 (𝑛 = 𝑁 → (((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀) ↔ ((𝓑C𝑛𝑆)‘𝑁) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
1211imbi2d 340 . . . 4 (𝑛 = 𝑁 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑛) ⊆ ((𝓑C𝑛𝑆)‘𝑀)) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑁) ⊆ ((𝓑C𝑛𝑆)‘𝑀))))
13 ssid 4018 . . . . 5 ((𝓑C𝑛𝑆)‘𝑀) ⊆ ((𝓑C𝑛𝑆)‘𝑀)
14132a1i 12 . . . 4 (𝑀 ∈ ℤ → ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑀) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
15 simprl 771 . . . . . . . . . . 11 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → 𝑓 ∈ (ℂ ↑pm 𝑆))
16 recnprss 25954 . . . . . . . . . . . . . 14 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
1716ad2antrr 726 . . . . . . . . . . . . 13 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → 𝑆 ⊆ ℂ)
1817adantr 480 . . . . . . . . . . . 12 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → 𝑆 ⊆ ℂ)
19 simplll 775 . . . . . . . . . . . . . 14 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → 𝑆 ∈ {ℝ, ℂ})
20 eluznn0 12957 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ ℕ0)
2120adantll 714 . . . . . . . . . . . . . . 15 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ ℕ0)
2221adantr 480 . . . . . . . . . . . . . 14 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → 𝑚 ∈ ℕ0)
23 dvnf 25978 . . . . . . . . . . . . . 14 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑓 ∈ (ℂ ↑pm 𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑆 D𝑛 𝑓)‘𝑚):dom ((𝑆 D𝑛 𝑓)‘𝑚)⟶ℂ)
2419, 15, 22, 23syl3anc 1370 . . . . . . . . . . . . 13 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘𝑚):dom ((𝑆 D𝑛 𝑓)‘𝑚)⟶ℂ)
25 dvnbss 25979 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑓 ∈ (ℂ ↑pm 𝑆) ∧ 𝑚 ∈ ℕ0) → dom ((𝑆 D𝑛 𝑓)‘𝑚) ⊆ dom 𝑓)
2619, 15, 22, 25syl3anc 1370 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom ((𝑆 D𝑛 𝑓)‘𝑚) ⊆ dom 𝑓)
27 dvnp1 25976 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ⊆ ℂ ∧ 𝑓 ∈ (ℂ ↑pm 𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) = (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)))
2818, 15, 22, 27syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) = (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)))
29 simprr 773 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))
3028, 29eqeltrrd 2840 . . . . . . . . . . . . . . . . . 18 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) ∈ (dom 𝑓cn→ℂ))
31 cncff 24933 . . . . . . . . . . . . . . . . . 18 ((𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) ∈ (dom 𝑓cn→ℂ) → (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)):dom 𝑓⟶ℂ)
3230, 31syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)):dom 𝑓⟶ℂ)
3332fdmd 6747 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) = dom 𝑓)
34 cnex 11234 . . . . . . . . . . . . . . . . . . . . 21 ℂ ∈ V
35 elpm2g 8883 . . . . . . . . . . . . . . . . . . . . 21 ((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) → (𝑓 ∈ (ℂ ↑pm 𝑆) ↔ (𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓𝑆)))
3634, 19, 35sylancr 587 . . . . . . . . . . . . . . . . . . . 20 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (𝑓 ∈ (ℂ ↑pm 𝑆) ↔ (𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓𝑆)))
3715, 36mpbid 232 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓𝑆))
3837simprd 495 . . . . . . . . . . . . . . . . . 18 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom 𝑓𝑆)
3926, 38sstrd 4006 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom ((𝑆 D𝑛 𝑓)‘𝑚) ⊆ 𝑆)
4018, 24, 39dvbss 25951 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) ⊆ dom ((𝑆 D𝑛 𝑓)‘𝑚))
4133, 40eqsstrrd 4035 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom 𝑓 ⊆ dom ((𝑆 D𝑛 𝑓)‘𝑚))
4226, 41eqssd 4013 . . . . . . . . . . . . . 14 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom ((𝑆 D𝑛 𝑓)‘𝑚) = dom 𝑓)
4342feq2d 6723 . . . . . . . . . . . . 13 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (((𝑆 D𝑛 𝑓)‘𝑚):dom ((𝑆 D𝑛 𝑓)‘𝑚)⟶ℂ ↔ ((𝑆 D𝑛 𝑓)‘𝑚):dom 𝑓⟶ℂ))
4424, 43mpbid 232 . . . . . . . . . . . 12 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘𝑚):dom 𝑓⟶ℂ)
45 dvcn 25972 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ ((𝑆 D𝑛 𝑓)‘𝑚):dom 𝑓⟶ℂ ∧ dom 𝑓𝑆) ∧ dom (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) = dom 𝑓) → ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ))
4618, 44, 38, 33, 45syl31anc 1372 . . . . . . . . . . 11 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ))
4715, 46jca 511 . . . . . . . . . 10 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ)))
4847ex 412 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ)) → (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ))))
49 peano2nn0 12564 . . . . . . . . . . 11 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ0)
5021, 49syl 17 . . . . . . . . . 10 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → (𝑚 + 1) ∈ ℕ0)
51 elcpn 25985 . . . . . . . . . 10 ((𝑆 ⊆ ℂ ∧ (𝑚 + 1) ∈ ℕ0) → (𝑓 ∈ ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ↔ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))))
5217, 50, 51syl2anc 584 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → (𝑓 ∈ ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ↔ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))))
53 elcpn 25985 . . . . . . . . . 10 ((𝑆 ⊆ ℂ ∧ 𝑚 ∈ ℕ0) → (𝑓 ∈ ((𝓑C𝑛𝑆)‘𝑚) ↔ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ))))
5417, 21, 53syl2anc 584 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → (𝑓 ∈ ((𝓑C𝑛𝑆)‘𝑚) ↔ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ))))
5548, 52, 543imtr4d 294 . . . . . . . 8 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → (𝑓 ∈ ((𝓑C𝑛𝑆)‘(𝑚 + 1)) → 𝑓 ∈ ((𝓑C𝑛𝑆)‘𝑚)))
5655ssrdv 4001 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑚))
57 sstr2 4002 . . . . . . 7 (((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑚) → (((𝓑C𝑛𝑆)‘𝑚) ⊆ ((𝓑C𝑛𝑆)‘𝑀) → ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
5856, 57syl 17 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → (((𝓑C𝑛𝑆)‘𝑚) ⊆ ((𝓑C𝑛𝑆)‘𝑀) → ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
5958expcom 413 . . . . 5 (𝑚 ∈ (ℤ𝑀) → ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → (((𝓑C𝑛𝑆)‘𝑚) ⊆ ((𝓑C𝑛𝑆)‘𝑀) → ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑀))))
6059a2d 29 . . . 4 (𝑚 ∈ (ℤ𝑀) → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑚) ⊆ ((𝓑C𝑛𝑆)‘𝑀)) → ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘(𝑚 + 1)) ⊆ ((𝓑C𝑛𝑆)‘𝑀))))
613, 6, 9, 12, 14, 60uzind4 12946 . . 3 (𝑁 ∈ (ℤ𝑀) → ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((𝓑C𝑛𝑆)‘𝑁) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
6261com12 32 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ (ℤ𝑀) → ((𝓑C𝑛𝑆)‘𝑁) ⊆ ((𝓑C𝑛𝑆)‘𝑀)))
63623impia 1116 1 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → ((𝓑C𝑛𝑆)‘𝑁) ⊆ ((𝓑C𝑛𝑆)‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  wss 3963  {cpr 4633  dom cdm 5689  wf 6559  cfv 6563  (class class class)co 7431  pm cpm 8866  cc 11151  cr 11152  1c1 11154   + caddc 11156  0cn0 12524  cz 12611  cuz 12876  cnccncf 24916   D cdv 25913   D𝑛 cdvn 25914  𝓑C𝑛ccpn 25915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917  df-dvn 25918  df-cpn 25919
This theorem is referenced by:  cpncn  25987  c1lip2  26052
  Copyright terms: Public domain W3C validator