MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpnord Structured version   Visualization version   GIF version

Theorem cpnord 23989
Description: Cn conditions are ordered by strength. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
cpnord ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → ((Cn𝑆)‘𝑁) ⊆ ((Cn𝑆)‘𝑀))

Proof of Theorem cpnord
Dummy variables 𝑓 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6375 . . . . . 6 (𝑛 = 𝑀 → ((Cn𝑆)‘𝑛) = ((Cn𝑆)‘𝑀))
21sseq1d 3792 . . . . 5 (𝑛 = 𝑀 → (((Cn𝑆)‘𝑛) ⊆ ((Cn𝑆)‘𝑀) ↔ ((Cn𝑆)‘𝑀) ⊆ ((Cn𝑆)‘𝑀)))
32imbi2d 331 . . . 4 (𝑛 = 𝑀 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((Cn𝑆)‘𝑛) ⊆ ((Cn𝑆)‘𝑀)) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((Cn𝑆)‘𝑀) ⊆ ((Cn𝑆)‘𝑀))))
4 fveq2 6375 . . . . . 6 (𝑛 = 𝑚 → ((Cn𝑆)‘𝑛) = ((Cn𝑆)‘𝑚))
54sseq1d 3792 . . . . 5 (𝑛 = 𝑚 → (((Cn𝑆)‘𝑛) ⊆ ((Cn𝑆)‘𝑀) ↔ ((Cn𝑆)‘𝑚) ⊆ ((Cn𝑆)‘𝑀)))
65imbi2d 331 . . . 4 (𝑛 = 𝑚 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((Cn𝑆)‘𝑛) ⊆ ((Cn𝑆)‘𝑀)) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((Cn𝑆)‘𝑚) ⊆ ((Cn𝑆)‘𝑀))))
7 fveq2 6375 . . . . . 6 (𝑛 = (𝑚 + 1) → ((Cn𝑆)‘𝑛) = ((Cn𝑆)‘(𝑚 + 1)))
87sseq1d 3792 . . . . 5 (𝑛 = (𝑚 + 1) → (((Cn𝑆)‘𝑛) ⊆ ((Cn𝑆)‘𝑀) ↔ ((Cn𝑆)‘(𝑚 + 1)) ⊆ ((Cn𝑆)‘𝑀)))
98imbi2d 331 . . . 4 (𝑛 = (𝑚 + 1) → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((Cn𝑆)‘𝑛) ⊆ ((Cn𝑆)‘𝑀)) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((Cn𝑆)‘(𝑚 + 1)) ⊆ ((Cn𝑆)‘𝑀))))
10 fveq2 6375 . . . . . 6 (𝑛 = 𝑁 → ((Cn𝑆)‘𝑛) = ((Cn𝑆)‘𝑁))
1110sseq1d 3792 . . . . 5 (𝑛 = 𝑁 → (((Cn𝑆)‘𝑛) ⊆ ((Cn𝑆)‘𝑀) ↔ ((Cn𝑆)‘𝑁) ⊆ ((Cn𝑆)‘𝑀)))
1211imbi2d 331 . . . 4 (𝑛 = 𝑁 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((Cn𝑆)‘𝑛) ⊆ ((Cn𝑆)‘𝑀)) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((Cn𝑆)‘𝑁) ⊆ ((Cn𝑆)‘𝑀))))
13 ssid 3783 . . . . 5 ((Cn𝑆)‘𝑀) ⊆ ((Cn𝑆)‘𝑀)
14132a1i 12 . . . 4 (𝑀 ∈ ℤ → ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((Cn𝑆)‘𝑀) ⊆ ((Cn𝑆)‘𝑀)))
15 simprl 787 . . . . . . . . . . 11 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → 𝑓 ∈ (ℂ ↑pm 𝑆))
16 recnprss 23959 . . . . . . . . . . . . . 14 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
1716ad2antrr 717 . . . . . . . . . . . . 13 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → 𝑆 ⊆ ℂ)
1817adantr 472 . . . . . . . . . . . 12 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → 𝑆 ⊆ ℂ)
19 simplll 791 . . . . . . . . . . . . . 14 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → 𝑆 ∈ {ℝ, ℂ})
20 eluznn0 11958 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ ℕ0)
2120adantll 705 . . . . . . . . . . . . . . 15 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ ℕ0)
2221adantr 472 . . . . . . . . . . . . . 14 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → 𝑚 ∈ ℕ0)
23 dvnf 23981 . . . . . . . . . . . . . 14 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑓 ∈ (ℂ ↑pm 𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑆 D𝑛 𝑓)‘𝑚):dom ((𝑆 D𝑛 𝑓)‘𝑚)⟶ℂ)
2419, 15, 22, 23syl3anc 1490 . . . . . . . . . . . . 13 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘𝑚):dom ((𝑆 D𝑛 𝑓)‘𝑚)⟶ℂ)
25 dvnbss 23982 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑓 ∈ (ℂ ↑pm 𝑆) ∧ 𝑚 ∈ ℕ0) → dom ((𝑆 D𝑛 𝑓)‘𝑚) ⊆ dom 𝑓)
2619, 15, 22, 25syl3anc 1490 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom ((𝑆 D𝑛 𝑓)‘𝑚) ⊆ dom 𝑓)
27 dvnp1 23979 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ⊆ ℂ ∧ 𝑓 ∈ (ℂ ↑pm 𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) = (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)))
2818, 15, 22, 27syl3anc 1490 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) = (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)))
29 simprr 789 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))
3028, 29eqeltrrd 2845 . . . . . . . . . . . . . . . . . 18 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) ∈ (dom 𝑓cn→ℂ))
31 cncff 22975 . . . . . . . . . . . . . . . . . 18 ((𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) ∈ (dom 𝑓cn→ℂ) → (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)):dom 𝑓⟶ℂ)
3230, 31syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)):dom 𝑓⟶ℂ)
3332fdmd 6232 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) = dom 𝑓)
34 cnex 10270 . . . . . . . . . . . . . . . . . . . . 21 ℂ ∈ V
35 elpm2g 8077 . . . . . . . . . . . . . . . . . . . . 21 ((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) → (𝑓 ∈ (ℂ ↑pm 𝑆) ↔ (𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓𝑆)))
3634, 19, 35sylancr 581 . . . . . . . . . . . . . . . . . . . 20 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (𝑓 ∈ (ℂ ↑pm 𝑆) ↔ (𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓𝑆)))
3715, 36mpbid 223 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓𝑆))
3837simprd 489 . . . . . . . . . . . . . . . . . 18 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom 𝑓𝑆)
3926, 38sstrd 3771 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom ((𝑆 D𝑛 𝑓)‘𝑚) ⊆ 𝑆)
4018, 24, 39dvbss 23956 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) ⊆ dom ((𝑆 D𝑛 𝑓)‘𝑚))
4133, 40eqsstr3d 3800 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom 𝑓 ⊆ dom ((𝑆 D𝑛 𝑓)‘𝑚))
4226, 41eqssd 3778 . . . . . . . . . . . . . 14 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → dom ((𝑆 D𝑛 𝑓)‘𝑚) = dom 𝑓)
4342feq2d 6209 . . . . . . . . . . . . 13 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (((𝑆 D𝑛 𝑓)‘𝑚):dom ((𝑆 D𝑛 𝑓)‘𝑚)⟶ℂ ↔ ((𝑆 D𝑛 𝑓)‘𝑚):dom 𝑓⟶ℂ))
4424, 43mpbid 223 . . . . . . . . . . . 12 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘𝑚):dom 𝑓⟶ℂ)
45 dvcn 23975 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ ((𝑆 D𝑛 𝑓)‘𝑚):dom 𝑓⟶ℂ ∧ dom 𝑓𝑆) ∧ dom (𝑆 D ((𝑆 D𝑛 𝑓)‘𝑚)) = dom 𝑓) → ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ))
4618, 44, 38, 33, 45syl31anc 1492 . . . . . . . . . . 11 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ))
4715, 46jca 507 . . . . . . . . . 10 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))) → (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ)))
4847ex 401 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ)) → (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ))))
49 peano2nn0 11580 . . . . . . . . . . 11 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ0)
5021, 49syl 17 . . . . . . . . . 10 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → (𝑚 + 1) ∈ ℕ0)
51 elcpn 23988 . . . . . . . . . 10 ((𝑆 ⊆ ℂ ∧ (𝑚 + 1) ∈ ℕ0) → (𝑓 ∈ ((Cn𝑆)‘(𝑚 + 1)) ↔ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))))
5217, 50, 51syl2anc 579 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → (𝑓 ∈ ((Cn𝑆)‘(𝑚 + 1)) ↔ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘(𝑚 + 1)) ∈ (dom 𝑓cn→ℂ))))
53 elcpn 23988 . . . . . . . . . 10 ((𝑆 ⊆ ℂ ∧ 𝑚 ∈ ℕ0) → (𝑓 ∈ ((Cn𝑆)‘𝑚) ↔ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ))))
5417, 21, 53syl2anc 579 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → (𝑓 ∈ ((Cn𝑆)‘𝑚) ↔ (𝑓 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝑓)‘𝑚) ∈ (dom 𝑓cn→ℂ))))
5548, 52, 543imtr4d 285 . . . . . . . 8 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → (𝑓 ∈ ((Cn𝑆)‘(𝑚 + 1)) → 𝑓 ∈ ((Cn𝑆)‘𝑚)))
5655ssrdv 3767 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → ((Cn𝑆)‘(𝑚 + 1)) ⊆ ((Cn𝑆)‘𝑚))
57 sstr2 3768 . . . . . . 7 (((Cn𝑆)‘(𝑚 + 1)) ⊆ ((Cn𝑆)‘𝑚) → (((Cn𝑆)‘𝑚) ⊆ ((Cn𝑆)‘𝑀) → ((Cn𝑆)‘(𝑚 + 1)) ⊆ ((Cn𝑆)‘𝑀)))
5856, 57syl 17 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑀)) → (((Cn𝑆)‘𝑚) ⊆ ((Cn𝑆)‘𝑀) → ((Cn𝑆)‘(𝑚 + 1)) ⊆ ((Cn𝑆)‘𝑀)))
5958expcom 402 . . . . 5 (𝑚 ∈ (ℤ𝑀) → ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → (((Cn𝑆)‘𝑚) ⊆ ((Cn𝑆)‘𝑀) → ((Cn𝑆)‘(𝑚 + 1)) ⊆ ((Cn𝑆)‘𝑀))))
6059a2d 29 . . . 4 (𝑚 ∈ (ℤ𝑀) → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((Cn𝑆)‘𝑚) ⊆ ((Cn𝑆)‘𝑀)) → ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((Cn𝑆)‘(𝑚 + 1)) ⊆ ((Cn𝑆)‘𝑀))))
613, 6, 9, 12, 14, 60uzind4 11946 . . 3 (𝑁 ∈ (ℤ𝑀) → ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → ((Cn𝑆)‘𝑁) ⊆ ((Cn𝑆)‘𝑀)))
6261com12 32 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ (ℤ𝑀) → ((Cn𝑆)‘𝑁) ⊆ ((Cn𝑆)‘𝑀)))
63623impia 1145 1 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → ((Cn𝑆)‘𝑁) ⊆ ((Cn𝑆)‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  Vcvv 3350  wss 3732  {cpr 4336  dom cdm 5277  wf 6064  cfv 6068  (class class class)co 6842  pm cpm 8061  cc 10187  cr 10188  1c1 10190   + caddc 10192  0cn0 11538  cz 11624  cuz 11886  cnccncf 22958   D cdv 23918   D𝑛 cdvn 23919  Cnccpn 23920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-icc 12384  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-starv 16229  df-sca 16230  df-vsca 16231  df-ip 16232  df-tset 16233  df-ple 16234  df-ds 16236  df-unif 16237  df-hom 16238  df-cco 16239  df-rest 16349  df-topn 16350  df-0g 16368  df-gsum 16369  df-topgen 16370  df-pt 16371  df-prds 16374  df-xrs 16428  df-qtop 16433  df-imas 16434  df-xps 16436  df-mre 16512  df-mrc 16513  df-acs 16515  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-submnd 17602  df-mulg 17808  df-cntz 18013  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-lp 21220  df-perf 21221  df-cn 21311  df-cnp 21312  df-haus 21399  df-tx 21645  df-hmeo 21838  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-xms 22404  df-ms 22405  df-tms 22406  df-cncf 22960  df-limc 23921  df-dv 23922  df-dvn 23923  df-cpn 23924
This theorem is referenced by:  cpncn  23990  c1lip2  24052
  Copyright terms: Public domain W3C validator