MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmlem1a Structured version   Visualization version   GIF version

Theorem prmlem1a 17140
Description: A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
prmlem1.n 𝑁 ∈ ℕ
prmlem1.gt 1 < 𝑁
prmlem1.2 ¬ 2 ∥ 𝑁
prmlem1.3 ¬ 3 ∥ 𝑁
prmlem1a.x ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
Assertion
Ref Expression
prmlem1a 𝑁 ∈ ℙ
Distinct variable group:   𝑥,𝑁

Proof of Theorem prmlem1a
StepHypRef Expression
1 prmlem1.n . . 3 𝑁 ∈ ℕ
2 prmlem1.gt . . 3 1 < 𝑁
3 eluz2b2 12960 . . 3 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
41, 2, 3mpbir2an 711 . 2 𝑁 ∈ (ℤ‘2)
5 breq1 5150 . . . . . 6 (𝑥 = 2 → (𝑥𝑁 ↔ 2 ∥ 𝑁))
65notbid 318 . . . . 5 (𝑥 = 2 → (¬ 𝑥𝑁 ↔ ¬ 2 ∥ 𝑁))
76imbi2d 340 . . . 4 (𝑥 = 2 → (((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁) ↔ ((𝑥↑2) ≤ 𝑁 → ¬ 2 ∥ 𝑁)))
8 prmnn 16707 . . . . . 6 (𝑥 ∈ ℙ → 𝑥 ∈ ℕ)
98adantr 480 . . . . 5 ((𝑥 ∈ ℙ ∧ 𝑥 ≠ 2) → 𝑥 ∈ ℕ)
10 eldifsn 4790 . . . . . 6 (𝑥 ∈ (ℙ ∖ {2}) ↔ (𝑥 ∈ ℙ ∧ 𝑥 ≠ 2))
11 n2dvds1 16401 . . . . . . . . 9 ¬ 2 ∥ 1
12 prmlem1a.x . . . . . . . . . . 11 ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
13 prmlem1.3 . . . . . . . . . . . 12 ¬ 3 ∥ 𝑁
1413a1i 11 . . . . . . . . . . 11 (3 ∈ ℙ → ¬ 3 ∥ 𝑁)
15 3p2e5 12414 . . . . . . . . . . 11 (3 + 2) = 5
1612, 14, 15prmlem0 17139 . . . . . . . . . 10 ((¬ 2 ∥ 3 ∧ 𝑥 ∈ (ℤ‘3)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
17 1nprm 16712 . . . . . . . . . . 11 ¬ 1 ∈ ℙ
1817pm2.21i 119 . . . . . . . . . 10 (1 ∈ ℙ → ¬ 1 ∥ 𝑁)
19 1p2e3 12406 . . . . . . . . . 10 (1 + 2) = 3
2016, 18, 19prmlem0 17139 . . . . . . . . 9 ((¬ 2 ∥ 1 ∧ 𝑥 ∈ (ℤ‘1)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
2111, 20mpan 690 . . . . . . . 8 (𝑥 ∈ (ℤ‘1) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
22 nnuz 12918 . . . . . . . 8 ℕ = (ℤ‘1)
2321, 22eleq2s 2856 . . . . . . 7 (𝑥 ∈ ℕ → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
2423expd 415 . . . . . 6 (𝑥 ∈ ℕ → (𝑥 ∈ (ℙ ∖ {2}) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁)))
2510, 24biimtrrid 243 . . . . 5 (𝑥 ∈ ℕ → ((𝑥 ∈ ℙ ∧ 𝑥 ≠ 2) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁)))
269, 25mpcom 38 . . . 4 ((𝑥 ∈ ℙ ∧ 𝑥 ≠ 2) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁))
27 prmlem1.2 . . . . 5 ¬ 2 ∥ 𝑁
28272a1i 12 . . . 4 (𝑥 ∈ ℙ → ((𝑥↑2) ≤ 𝑁 → ¬ 2 ∥ 𝑁))
297, 26, 28pm2.61ne 3024 . . 3 (𝑥 ∈ ℙ → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁))
3029rgen 3060 . 2 𝑥 ∈ ℙ ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁)
31 isprm5 16740 . 2 (𝑁 ∈ ℙ ↔ (𝑁 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℙ ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁)))
324, 30, 31mpbir2an 711 1 𝑁 ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1536  wcel 2105  wne 2937  wral 3058  cdif 3959  {csn 4630   class class class wbr 5147  cfv 6562  (class class class)co 7430  1c1 11153   < clt 11292  cle 11293  cn 12263  2c2 12318  3c3 12319  5c5 12321  cuz 12875  cexp 14098  cdvds 16286  cprime 16704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-dvds 16287  df-prm 16705
This theorem is referenced by:  prmlem1  17141  prmlem2  17153
  Copyright terms: Public domain W3C validator