Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prmlem1a | Structured version Visualization version GIF version |
Description: A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
prmlem1.n | ⊢ 𝑁 ∈ ℕ |
prmlem1.gt | ⊢ 1 < 𝑁 |
prmlem1.2 | ⊢ ¬ 2 ∥ 𝑁 |
prmlem1.3 | ⊢ ¬ 3 ∥ 𝑁 |
prmlem1a.x | ⊢ ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ≥‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
Ref | Expression |
---|---|
prmlem1a | ⊢ 𝑁 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmlem1.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
2 | prmlem1.gt | . . 3 ⊢ 1 < 𝑁 | |
3 | eluz2b2 12661 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁)) | |
4 | 1, 2, 3 | mpbir2an 708 | . 2 ⊢ 𝑁 ∈ (ℤ≥‘2) |
5 | breq1 5077 | . . . . . 6 ⊢ (𝑥 = 2 → (𝑥 ∥ 𝑁 ↔ 2 ∥ 𝑁)) | |
6 | 5 | notbid 318 | . . . . 5 ⊢ (𝑥 = 2 → (¬ 𝑥 ∥ 𝑁 ↔ ¬ 2 ∥ 𝑁)) |
7 | 6 | imbi2d 341 | . . . 4 ⊢ (𝑥 = 2 → (((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁) ↔ ((𝑥↑2) ≤ 𝑁 → ¬ 2 ∥ 𝑁))) |
8 | prmnn 16379 | . . . . . 6 ⊢ (𝑥 ∈ ℙ → 𝑥 ∈ ℕ) | |
9 | 8 | adantr 481 | . . . . 5 ⊢ ((𝑥 ∈ ℙ ∧ 𝑥 ≠ 2) → 𝑥 ∈ ℕ) |
10 | eldifsn 4720 | . . . . . 6 ⊢ (𝑥 ∈ (ℙ ∖ {2}) ↔ (𝑥 ∈ ℙ ∧ 𝑥 ≠ 2)) | |
11 | n2dvds1 16077 | . . . . . . . . 9 ⊢ ¬ 2 ∥ 1 | |
12 | prmlem1a.x | . . . . . . . . . . 11 ⊢ ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ≥‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) | |
13 | prmlem1.3 | . . . . . . . . . . . 12 ⊢ ¬ 3 ∥ 𝑁 | |
14 | 13 | a1i 11 | . . . . . . . . . . 11 ⊢ (3 ∈ ℙ → ¬ 3 ∥ 𝑁) |
15 | 3p2e5 12124 | . . . . . . . . . . 11 ⊢ (3 + 2) = 5 | |
16 | 12, 14, 15 | prmlem0 16807 | . . . . . . . . . 10 ⊢ ((¬ 2 ∥ 3 ∧ 𝑥 ∈ (ℤ≥‘3)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
17 | 1nprm 16384 | . . . . . . . . . . 11 ⊢ ¬ 1 ∈ ℙ | |
18 | 17 | pm2.21i 119 | . . . . . . . . . 10 ⊢ (1 ∈ ℙ → ¬ 1 ∥ 𝑁) |
19 | 1p2e3 12116 | . . . . . . . . . 10 ⊢ (1 + 2) = 3 | |
20 | 16, 18, 19 | prmlem0 16807 | . . . . . . . . 9 ⊢ ((¬ 2 ∥ 1 ∧ 𝑥 ∈ (ℤ≥‘1)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
21 | 11, 20 | mpan 687 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘1) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
22 | nnuz 12621 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
23 | 21, 22 | eleq2s 2857 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
24 | 23 | expd 416 | . . . . . 6 ⊢ (𝑥 ∈ ℕ → (𝑥 ∈ (ℙ ∖ {2}) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁))) |
25 | 10, 24 | syl5bir 242 | . . . . 5 ⊢ (𝑥 ∈ ℕ → ((𝑥 ∈ ℙ ∧ 𝑥 ≠ 2) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁))) |
26 | 9, 25 | mpcom 38 | . . . 4 ⊢ ((𝑥 ∈ ℙ ∧ 𝑥 ≠ 2) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁)) |
27 | prmlem1.2 | . . . . 5 ⊢ ¬ 2 ∥ 𝑁 | |
28 | 27 | 2a1i 12 | . . . 4 ⊢ (𝑥 ∈ ℙ → ((𝑥↑2) ≤ 𝑁 → ¬ 2 ∥ 𝑁)) |
29 | 7, 26, 28 | pm2.61ne 3030 | . . 3 ⊢ (𝑥 ∈ ℙ → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁)) |
30 | 29 | rgen 3074 | . 2 ⊢ ∀𝑥 ∈ ℙ ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁) |
31 | isprm5 16412 | . 2 ⊢ (𝑁 ∈ ℙ ↔ (𝑁 ∈ (ℤ≥‘2) ∧ ∀𝑥 ∈ ℙ ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁))) | |
32 | 4, 30, 31 | mpbir2an 708 | 1 ⊢ 𝑁 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∖ cdif 3884 {csn 4561 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 1c1 10872 < clt 11009 ≤ cle 11010 ℕcn 11973 2c2 12028 3c3 12029 5c5 12031 ℤ≥cuz 12582 ↑cexp 13782 ∥ cdvds 15963 ℙcprime 16376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-dvds 15964 df-prm 16377 |
This theorem is referenced by: prmlem1 16809 prmlem2 16821 |
Copyright terms: Public domain | W3C validator |