| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prmlem1a | Structured version Visualization version GIF version | ||
| Description: A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| prmlem1.n | ⊢ 𝑁 ∈ ℕ |
| prmlem1.gt | ⊢ 1 < 𝑁 |
| prmlem1.2 | ⊢ ¬ 2 ∥ 𝑁 |
| prmlem1.3 | ⊢ ¬ 3 ∥ 𝑁 |
| prmlem1a.x | ⊢ ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ≥‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
| Ref | Expression |
|---|---|
| prmlem1a | ⊢ 𝑁 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmlem1.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
| 2 | prmlem1.gt | . . 3 ⊢ 1 < 𝑁 | |
| 3 | eluz2b2 12937 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | . 2 ⊢ 𝑁 ∈ (ℤ≥‘2) |
| 5 | breq1 5122 | . . . . . 6 ⊢ (𝑥 = 2 → (𝑥 ∥ 𝑁 ↔ 2 ∥ 𝑁)) | |
| 6 | 5 | notbid 318 | . . . . 5 ⊢ (𝑥 = 2 → (¬ 𝑥 ∥ 𝑁 ↔ ¬ 2 ∥ 𝑁)) |
| 7 | 6 | imbi2d 340 | . . . 4 ⊢ (𝑥 = 2 → (((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁) ↔ ((𝑥↑2) ≤ 𝑁 → ¬ 2 ∥ 𝑁))) |
| 8 | prmnn 16693 | . . . . . 6 ⊢ (𝑥 ∈ ℙ → 𝑥 ∈ ℕ) | |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝑥 ∈ ℙ ∧ 𝑥 ≠ 2) → 𝑥 ∈ ℕ) |
| 10 | eldifsn 4762 | . . . . . 6 ⊢ (𝑥 ∈ (ℙ ∖ {2}) ↔ (𝑥 ∈ ℙ ∧ 𝑥 ≠ 2)) | |
| 11 | n2dvds1 16387 | . . . . . . . . 9 ⊢ ¬ 2 ∥ 1 | |
| 12 | prmlem1a.x | . . . . . . . . . . 11 ⊢ ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ≥‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) | |
| 13 | prmlem1.3 | . . . . . . . . . . . 12 ⊢ ¬ 3 ∥ 𝑁 | |
| 14 | 13 | a1i 11 | . . . . . . . . . . 11 ⊢ (3 ∈ ℙ → ¬ 3 ∥ 𝑁) |
| 15 | 3p2e5 12391 | . . . . . . . . . . 11 ⊢ (3 + 2) = 5 | |
| 16 | 12, 14, 15 | prmlem0 17125 | . . . . . . . . . 10 ⊢ ((¬ 2 ∥ 3 ∧ 𝑥 ∈ (ℤ≥‘3)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
| 17 | 1nprm 16698 | . . . . . . . . . . 11 ⊢ ¬ 1 ∈ ℙ | |
| 18 | 17 | pm2.21i 119 | . . . . . . . . . 10 ⊢ (1 ∈ ℙ → ¬ 1 ∥ 𝑁) |
| 19 | 1p2e3 12383 | . . . . . . . . . 10 ⊢ (1 + 2) = 3 | |
| 20 | 16, 18, 19 | prmlem0 17125 | . . . . . . . . 9 ⊢ ((¬ 2 ∥ 1 ∧ 𝑥 ∈ (ℤ≥‘1)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
| 21 | 11, 20 | mpan 690 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘1) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
| 22 | nnuz 12895 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
| 23 | 21, 22 | eleq2s 2852 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
| 24 | 23 | expd 415 | . . . . . 6 ⊢ (𝑥 ∈ ℕ → (𝑥 ∈ (ℙ ∖ {2}) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁))) |
| 25 | 10, 24 | biimtrrid 243 | . . . . 5 ⊢ (𝑥 ∈ ℕ → ((𝑥 ∈ ℙ ∧ 𝑥 ≠ 2) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁))) |
| 26 | 9, 25 | mpcom 38 | . . . 4 ⊢ ((𝑥 ∈ ℙ ∧ 𝑥 ≠ 2) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁)) |
| 27 | prmlem1.2 | . . . . 5 ⊢ ¬ 2 ∥ 𝑁 | |
| 28 | 27 | 2a1i 12 | . . . 4 ⊢ (𝑥 ∈ ℙ → ((𝑥↑2) ≤ 𝑁 → ¬ 2 ∥ 𝑁)) |
| 29 | 7, 26, 28 | pm2.61ne 3017 | . . 3 ⊢ (𝑥 ∈ ℙ → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁)) |
| 30 | 29 | rgen 3053 | . 2 ⊢ ∀𝑥 ∈ ℙ ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁) |
| 31 | isprm5 16726 | . 2 ⊢ (𝑁 ∈ ℙ ↔ (𝑁 ∈ (ℤ≥‘2) ∧ ∀𝑥 ∈ ℙ ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁))) | |
| 32 | 4, 30, 31 | mpbir2an 711 | 1 ⊢ 𝑁 ∈ ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∖ cdif 3923 {csn 4601 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 1c1 11130 < clt 11269 ≤ cle 11270 ℕcn 12240 2c2 12295 3c3 12296 5c5 12298 ℤ≥cuz 12852 ↑cexp 14079 ∥ cdvds 16272 ℙcprime 16690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fz 13525 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-dvds 16273 df-prm 16691 |
| This theorem is referenced by: prmlem1 17127 prmlem2 17139 |
| Copyright terms: Public domain | W3C validator |