| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prmlem1a | Structured version Visualization version GIF version | ||
| Description: A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| prmlem1.n | ⊢ 𝑁 ∈ ℕ |
| prmlem1.gt | ⊢ 1 < 𝑁 |
| prmlem1.2 | ⊢ ¬ 2 ∥ 𝑁 |
| prmlem1.3 | ⊢ ¬ 3 ∥ 𝑁 |
| prmlem1a.x | ⊢ ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ≥‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
| Ref | Expression |
|---|---|
| prmlem1a | ⊢ 𝑁 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmlem1.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
| 2 | prmlem1.gt | . . 3 ⊢ 1 < 𝑁 | |
| 3 | eluz2b2 12840 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | . 2 ⊢ 𝑁 ∈ (ℤ≥‘2) |
| 5 | breq1 5098 | . . . . . 6 ⊢ (𝑥 = 2 → (𝑥 ∥ 𝑁 ↔ 2 ∥ 𝑁)) | |
| 6 | 5 | notbid 318 | . . . . 5 ⊢ (𝑥 = 2 → (¬ 𝑥 ∥ 𝑁 ↔ ¬ 2 ∥ 𝑁)) |
| 7 | 6 | imbi2d 340 | . . . 4 ⊢ (𝑥 = 2 → (((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁) ↔ ((𝑥↑2) ≤ 𝑁 → ¬ 2 ∥ 𝑁))) |
| 8 | prmnn 16603 | . . . . . 6 ⊢ (𝑥 ∈ ℙ → 𝑥 ∈ ℕ) | |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝑥 ∈ ℙ ∧ 𝑥 ≠ 2) → 𝑥 ∈ ℕ) |
| 10 | eldifsn 4740 | . . . . . 6 ⊢ (𝑥 ∈ (ℙ ∖ {2}) ↔ (𝑥 ∈ ℙ ∧ 𝑥 ≠ 2)) | |
| 11 | n2dvds1 16297 | . . . . . . . . 9 ⊢ ¬ 2 ∥ 1 | |
| 12 | prmlem1a.x | . . . . . . . . . . 11 ⊢ ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ≥‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) | |
| 13 | prmlem1.3 | . . . . . . . . . . . 12 ⊢ ¬ 3 ∥ 𝑁 | |
| 14 | 13 | a1i 11 | . . . . . . . . . . 11 ⊢ (3 ∈ ℙ → ¬ 3 ∥ 𝑁) |
| 15 | 3p2e5 12292 | . . . . . . . . . . 11 ⊢ (3 + 2) = 5 | |
| 16 | 12, 14, 15 | prmlem0 17035 | . . . . . . . . . 10 ⊢ ((¬ 2 ∥ 3 ∧ 𝑥 ∈ (ℤ≥‘3)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
| 17 | 1nprm 16608 | . . . . . . . . . . 11 ⊢ ¬ 1 ∈ ℙ | |
| 18 | 17 | pm2.21i 119 | . . . . . . . . . 10 ⊢ (1 ∈ ℙ → ¬ 1 ∥ 𝑁) |
| 19 | 1p2e3 12284 | . . . . . . . . . 10 ⊢ (1 + 2) = 3 | |
| 20 | 16, 18, 19 | prmlem0 17035 | . . . . . . . . 9 ⊢ ((¬ 2 ∥ 1 ∧ 𝑥 ∈ (ℤ≥‘1)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
| 21 | 11, 20 | mpan 690 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘1) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
| 22 | nnuz 12796 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
| 23 | 21, 22 | eleq2s 2846 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
| 24 | 23 | expd 415 | . . . . . 6 ⊢ (𝑥 ∈ ℕ → (𝑥 ∈ (ℙ ∖ {2}) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁))) |
| 25 | 10, 24 | biimtrrid 243 | . . . . 5 ⊢ (𝑥 ∈ ℕ → ((𝑥 ∈ ℙ ∧ 𝑥 ≠ 2) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁))) |
| 26 | 9, 25 | mpcom 38 | . . . 4 ⊢ ((𝑥 ∈ ℙ ∧ 𝑥 ≠ 2) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁)) |
| 27 | prmlem1.2 | . . . . 5 ⊢ ¬ 2 ∥ 𝑁 | |
| 28 | 27 | 2a1i 12 | . . . 4 ⊢ (𝑥 ∈ ℙ → ((𝑥↑2) ≤ 𝑁 → ¬ 2 ∥ 𝑁)) |
| 29 | 7, 26, 28 | pm2.61ne 3010 | . . 3 ⊢ (𝑥 ∈ ℙ → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁)) |
| 30 | 29 | rgen 3046 | . 2 ⊢ ∀𝑥 ∈ ℙ ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁) |
| 31 | isprm5 16636 | . 2 ⊢ (𝑁 ∈ ℙ ↔ (𝑁 ∈ (ℤ≥‘2) ∧ ∀𝑥 ∈ ℙ ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁))) | |
| 32 | 4, 30, 31 | mpbir2an 711 | 1 ⊢ 𝑁 ∈ ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∖ cdif 3902 {csn 4579 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 1c1 11029 < clt 11168 ≤ cle 11169 ℕcn 12146 2c2 12201 3c3 12202 5c5 12204 ℤ≥cuz 12753 ↑cexp 13986 ∥ cdvds 16181 ℙcprime 16600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-fz 13429 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-dvds 16182 df-prm 16601 |
| This theorem is referenced by: prmlem1 17037 prmlem2 17049 |
| Copyright terms: Public domain | W3C validator |