MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmlem1a Structured version   Visualization version   GIF version

Theorem prmlem1a 17015
Description: A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
prmlem1.n 𝑁 ∈ ℕ
prmlem1.gt 1 < 𝑁
prmlem1.2 ¬ 2 ∥ 𝑁
prmlem1.3 ¬ 3 ∥ 𝑁
prmlem1a.x ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
Assertion
Ref Expression
prmlem1a 𝑁 ∈ ℙ
Distinct variable group:   𝑥,𝑁

Proof of Theorem prmlem1a
StepHypRef Expression
1 prmlem1.n . . 3 𝑁 ∈ ℕ
2 prmlem1.gt . . 3 1 < 𝑁
3 eluz2b2 12816 . . 3 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
41, 2, 3mpbir2an 711 . 2 𝑁 ∈ (ℤ‘2)
5 breq1 5094 . . . . . 6 (𝑥 = 2 → (𝑥𝑁 ↔ 2 ∥ 𝑁))
65notbid 318 . . . . 5 (𝑥 = 2 → (¬ 𝑥𝑁 ↔ ¬ 2 ∥ 𝑁))
76imbi2d 340 . . . 4 (𝑥 = 2 → (((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁) ↔ ((𝑥↑2) ≤ 𝑁 → ¬ 2 ∥ 𝑁)))
8 prmnn 16582 . . . . . 6 (𝑥 ∈ ℙ → 𝑥 ∈ ℕ)
98adantr 480 . . . . 5 ((𝑥 ∈ ℙ ∧ 𝑥 ≠ 2) → 𝑥 ∈ ℕ)
10 eldifsn 4738 . . . . . 6 (𝑥 ∈ (ℙ ∖ {2}) ↔ (𝑥 ∈ ℙ ∧ 𝑥 ≠ 2))
11 n2dvds1 16276 . . . . . . . . 9 ¬ 2 ∥ 1
12 prmlem1a.x . . . . . . . . . . 11 ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
13 prmlem1.3 . . . . . . . . . . . 12 ¬ 3 ∥ 𝑁
1413a1i 11 . . . . . . . . . . 11 (3 ∈ ℙ → ¬ 3 ∥ 𝑁)
15 3p2e5 12268 . . . . . . . . . . 11 (3 + 2) = 5
1612, 14, 15prmlem0 17014 . . . . . . . . . 10 ((¬ 2 ∥ 3 ∧ 𝑥 ∈ (ℤ‘3)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
17 1nprm 16587 . . . . . . . . . . 11 ¬ 1 ∈ ℙ
1817pm2.21i 119 . . . . . . . . . 10 (1 ∈ ℙ → ¬ 1 ∥ 𝑁)
19 1p2e3 12260 . . . . . . . . . 10 (1 + 2) = 3
2016, 18, 19prmlem0 17014 . . . . . . . . 9 ((¬ 2 ∥ 1 ∧ 𝑥 ∈ (ℤ‘1)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
2111, 20mpan 690 . . . . . . . 8 (𝑥 ∈ (ℤ‘1) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
22 nnuz 12772 . . . . . . . 8 ℕ = (ℤ‘1)
2321, 22eleq2s 2849 . . . . . . 7 (𝑥 ∈ ℕ → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
2423expd 415 . . . . . 6 (𝑥 ∈ ℕ → (𝑥 ∈ (ℙ ∖ {2}) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁)))
2510, 24biimtrrid 243 . . . . 5 (𝑥 ∈ ℕ → ((𝑥 ∈ ℙ ∧ 𝑥 ≠ 2) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁)))
269, 25mpcom 38 . . . 4 ((𝑥 ∈ ℙ ∧ 𝑥 ≠ 2) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁))
27 prmlem1.2 . . . . 5 ¬ 2 ∥ 𝑁
28272a1i 12 . . . 4 (𝑥 ∈ ℙ → ((𝑥↑2) ≤ 𝑁 → ¬ 2 ∥ 𝑁))
297, 26, 28pm2.61ne 3013 . . 3 (𝑥 ∈ ℙ → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁))
3029rgen 3049 . 2 𝑥 ∈ ℙ ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁)
31 isprm5 16615 . 2 (𝑁 ∈ ℙ ↔ (𝑁 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℙ ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁)))
324, 30, 31mpbir2an 711 1 𝑁 ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  cdif 3899  {csn 4576   class class class wbr 5091  cfv 6481  (class class class)co 7346  1c1 11004   < clt 11143  cle 11144  cn 12122  2c2 12177  3c3 12178  5c5 12180  cuz 12729  cexp 13965  cdvds 16160  cprime 16579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-fz 13405  df-seq 13906  df-exp 13966  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-dvds 16161  df-prm 16580
This theorem is referenced by:  prmlem1  17016  prmlem2  17028
  Copyright terms: Public domain W3C validator