![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prmlem1a | Structured version Visualization version GIF version |
Description: A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
prmlem1.n | ⊢ 𝑁 ∈ ℕ |
prmlem1.gt | ⊢ 1 < 𝑁 |
prmlem1.2 | ⊢ ¬ 2 ∥ 𝑁 |
prmlem1.3 | ⊢ ¬ 3 ∥ 𝑁 |
prmlem1a.x | ⊢ ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ≥‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
Ref | Expression |
---|---|
prmlem1a | ⊢ 𝑁 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmlem1.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
2 | prmlem1.gt | . . 3 ⊢ 1 < 𝑁 | |
3 | eluz2b2 12853 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁)) | |
4 | 1, 2, 3 | mpbir2an 710 | . 2 ⊢ 𝑁 ∈ (ℤ≥‘2) |
5 | breq1 5113 | . . . . . 6 ⊢ (𝑥 = 2 → (𝑥 ∥ 𝑁 ↔ 2 ∥ 𝑁)) | |
6 | 5 | notbid 318 | . . . . 5 ⊢ (𝑥 = 2 → (¬ 𝑥 ∥ 𝑁 ↔ ¬ 2 ∥ 𝑁)) |
7 | 6 | imbi2d 341 | . . . 4 ⊢ (𝑥 = 2 → (((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁) ↔ ((𝑥↑2) ≤ 𝑁 → ¬ 2 ∥ 𝑁))) |
8 | prmnn 16557 | . . . . . 6 ⊢ (𝑥 ∈ ℙ → 𝑥 ∈ ℕ) | |
9 | 8 | adantr 482 | . . . . 5 ⊢ ((𝑥 ∈ ℙ ∧ 𝑥 ≠ 2) → 𝑥 ∈ ℕ) |
10 | eldifsn 4752 | . . . . . 6 ⊢ (𝑥 ∈ (ℙ ∖ {2}) ↔ (𝑥 ∈ ℙ ∧ 𝑥 ≠ 2)) | |
11 | n2dvds1 16257 | . . . . . . . . 9 ⊢ ¬ 2 ∥ 1 | |
12 | prmlem1a.x | . . . . . . . . . . 11 ⊢ ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ≥‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) | |
13 | prmlem1.3 | . . . . . . . . . . . 12 ⊢ ¬ 3 ∥ 𝑁 | |
14 | 13 | a1i 11 | . . . . . . . . . . 11 ⊢ (3 ∈ ℙ → ¬ 3 ∥ 𝑁) |
15 | 3p2e5 12311 | . . . . . . . . . . 11 ⊢ (3 + 2) = 5 | |
16 | 12, 14, 15 | prmlem0 16985 | . . . . . . . . . 10 ⊢ ((¬ 2 ∥ 3 ∧ 𝑥 ∈ (ℤ≥‘3)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
17 | 1nprm 16562 | . . . . . . . . . . 11 ⊢ ¬ 1 ∈ ℙ | |
18 | 17 | pm2.21i 119 | . . . . . . . . . 10 ⊢ (1 ∈ ℙ → ¬ 1 ∥ 𝑁) |
19 | 1p2e3 12303 | . . . . . . . . . 10 ⊢ (1 + 2) = 3 | |
20 | 16, 18, 19 | prmlem0 16985 | . . . . . . . . 9 ⊢ ((¬ 2 ∥ 1 ∧ 𝑥 ∈ (ℤ≥‘1)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
21 | 11, 20 | mpan 689 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘1) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
22 | nnuz 12813 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
23 | 21, 22 | eleq2s 2856 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
24 | 23 | expd 417 | . . . . . 6 ⊢ (𝑥 ∈ ℕ → (𝑥 ∈ (ℙ ∖ {2}) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁))) |
25 | 10, 24 | biimtrrid 242 | . . . . 5 ⊢ (𝑥 ∈ ℕ → ((𝑥 ∈ ℙ ∧ 𝑥 ≠ 2) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁))) |
26 | 9, 25 | mpcom 38 | . . . 4 ⊢ ((𝑥 ∈ ℙ ∧ 𝑥 ≠ 2) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁)) |
27 | prmlem1.2 | . . . . 5 ⊢ ¬ 2 ∥ 𝑁 | |
28 | 27 | 2a1i 12 | . . . 4 ⊢ (𝑥 ∈ ℙ → ((𝑥↑2) ≤ 𝑁 → ¬ 2 ∥ 𝑁)) |
29 | 7, 26, 28 | pm2.61ne 3031 | . . 3 ⊢ (𝑥 ∈ ℙ → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁)) |
30 | 29 | rgen 3067 | . 2 ⊢ ∀𝑥 ∈ ℙ ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁) |
31 | isprm5 16590 | . 2 ⊢ (𝑁 ∈ ℙ ↔ (𝑁 ∈ (ℤ≥‘2) ∧ ∀𝑥 ∈ ℙ ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁))) | |
32 | 4, 30, 31 | mpbir2an 710 | 1 ⊢ 𝑁 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2944 ∀wral 3065 ∖ cdif 3912 {csn 4591 class class class wbr 5110 ‘cfv 6501 (class class class)co 7362 1c1 11059 < clt 11196 ≤ cle 11197 ℕcn 12160 2c2 12215 3c3 12216 5c5 12218 ℤ≥cuz 12770 ↑cexp 13974 ∥ cdvds 16143 ℙcprime 16554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-cnex 11114 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 ax-pre-sup 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3356 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-1st 7926 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-1o 8417 df-2o 8418 df-er 8655 df-en 8891 df-dom 8892 df-sdom 8893 df-fin 8894 df-sup 9385 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-div 11820 df-nn 12161 df-2 12223 df-3 12224 df-4 12225 df-5 12226 df-n0 12421 df-z 12507 df-uz 12771 df-rp 12923 df-fz 13432 df-seq 13914 df-exp 13975 df-cj 14991 df-re 14992 df-im 14993 df-sqrt 15127 df-abs 15128 df-dvds 16144 df-prm 16555 |
This theorem is referenced by: prmlem1 16987 prmlem2 16999 |
Copyright terms: Public domain | W3C validator |