MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmlem1a Structured version   Visualization version   GIF version

Theorem prmlem1a 17111
Description: A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
prmlem1.n 𝑁 ∈ ℕ
prmlem1.gt 1 < 𝑁
prmlem1.2 ¬ 2 ∥ 𝑁
prmlem1.3 ¬ 3 ∥ 𝑁
prmlem1a.x ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
Assertion
Ref Expression
prmlem1a 𝑁 ∈ ℙ
Distinct variable group:   𝑥,𝑁

Proof of Theorem prmlem1a
StepHypRef Expression
1 prmlem1.n . . 3 𝑁 ∈ ℕ
2 prmlem1.gt . . 3 1 < 𝑁
3 eluz2b2 12959 . . 3 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
41, 2, 3mpbir2an 709 . 2 𝑁 ∈ (ℤ‘2)
5 breq1 5158 . . . . . 6 (𝑥 = 2 → (𝑥𝑁 ↔ 2 ∥ 𝑁))
65notbid 317 . . . . 5 (𝑥 = 2 → (¬ 𝑥𝑁 ↔ ¬ 2 ∥ 𝑁))
76imbi2d 339 . . . 4 (𝑥 = 2 → (((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁) ↔ ((𝑥↑2) ≤ 𝑁 → ¬ 2 ∥ 𝑁)))
8 prmnn 16677 . . . . . 6 (𝑥 ∈ ℙ → 𝑥 ∈ ℕ)
98adantr 479 . . . . 5 ((𝑥 ∈ ℙ ∧ 𝑥 ≠ 2) → 𝑥 ∈ ℕ)
10 eldifsn 4795 . . . . . 6 (𝑥 ∈ (ℙ ∖ {2}) ↔ (𝑥 ∈ ℙ ∧ 𝑥 ≠ 2))
11 n2dvds1 16372 . . . . . . . . 9 ¬ 2 ∥ 1
12 prmlem1a.x . . . . . . . . . . 11 ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
13 prmlem1.3 . . . . . . . . . . . 12 ¬ 3 ∥ 𝑁
1413a1i 11 . . . . . . . . . . 11 (3 ∈ ℙ → ¬ 3 ∥ 𝑁)
15 3p2e5 12417 . . . . . . . . . . 11 (3 + 2) = 5
1612, 14, 15prmlem0 17110 . . . . . . . . . 10 ((¬ 2 ∥ 3 ∧ 𝑥 ∈ (ℤ‘3)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
17 1nprm 16682 . . . . . . . . . . 11 ¬ 1 ∈ ℙ
1817pm2.21i 119 . . . . . . . . . 10 (1 ∈ ℙ → ¬ 1 ∥ 𝑁)
19 1p2e3 12409 . . . . . . . . . 10 (1 + 2) = 3
2016, 18, 19prmlem0 17110 . . . . . . . . 9 ((¬ 2 ∥ 1 ∧ 𝑥 ∈ (ℤ‘1)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
2111, 20mpan 688 . . . . . . . 8 (𝑥 ∈ (ℤ‘1) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
22 nnuz 12919 . . . . . . . 8 ℕ = (ℤ‘1)
2321, 22eleq2s 2844 . . . . . . 7 (𝑥 ∈ ℕ → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
2423expd 414 . . . . . 6 (𝑥 ∈ ℕ → (𝑥 ∈ (ℙ ∖ {2}) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁)))
2510, 24biimtrrid 242 . . . . 5 (𝑥 ∈ ℕ → ((𝑥 ∈ ℙ ∧ 𝑥 ≠ 2) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁)))
269, 25mpcom 38 . . . 4 ((𝑥 ∈ ℙ ∧ 𝑥 ≠ 2) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁))
27 prmlem1.2 . . . . 5 ¬ 2 ∥ 𝑁
28272a1i 12 . . . 4 (𝑥 ∈ ℙ → ((𝑥↑2) ≤ 𝑁 → ¬ 2 ∥ 𝑁))
297, 26, 28pm2.61ne 3017 . . 3 (𝑥 ∈ ℙ → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁))
3029rgen 3053 . 2 𝑥 ∈ ℙ ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁)
31 isprm5 16710 . 2 (𝑁 ∈ ℙ ↔ (𝑁 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℙ ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁)))
324, 30, 31mpbir2an 709 1 𝑁 ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1534  wcel 2099  wne 2930  wral 3051  cdif 3944  {csn 4633   class class class wbr 5155  cfv 6556  (class class class)co 7426  1c1 11161   < clt 11300  cle 11301  cn 12266  2c2 12321  3c3 12322  5c5 12324  cuz 12876  cexp 14083  cdvds 16258  cprime 16674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237  ax-pre-sup 11238
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8005  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-1o 8498  df-2o 8499  df-er 8736  df-en 8977  df-dom 8978  df-sdom 8979  df-fin 8980  df-sup 9487  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-div 11924  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-n0 12527  df-z 12613  df-uz 12877  df-rp 13031  df-fz 13541  df-seq 14024  df-exp 14084  df-cj 15106  df-re 15107  df-im 15108  df-sqrt 15242  df-abs 15243  df-dvds 16259  df-prm 16675
This theorem is referenced by:  prmlem1  17112  prmlem2  17124
  Copyright terms: Public domain W3C validator