MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volsuplem Structured version   Visualization version   GIF version

Theorem volsuplem 25489
Description: Lemma for volsup 25490. (Contributed by Mario Carneiro, 4-Jul-2014.)
Assertion
Ref Expression
volsuplem ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴))) → (𝐹𝐴) ⊆ (𝐹𝐵))
Distinct variable group:   𝑛,𝐹
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)

Proof of Theorem volsuplem
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6840 . . . . . 6 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
21sseq2d 3976 . . . . 5 (𝑥 = 𝐴 → ((𝐹𝐴) ⊆ (𝐹𝑥) ↔ (𝐹𝐴) ⊆ (𝐹𝐴)))
32imbi2d 340 . . . 4 (𝑥 = 𝐴 → (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑥)) ↔ ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝐴))))
4 fveq2 6840 . . . . . 6 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
54sseq2d 3976 . . . . 5 (𝑥 = 𝑘 → ((𝐹𝐴) ⊆ (𝐹𝑥) ↔ (𝐹𝐴) ⊆ (𝐹𝑘)))
65imbi2d 340 . . . 4 (𝑥 = 𝑘 → (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑥)) ↔ ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑘))))
7 fveq2 6840 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
87sseq2d 3976 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝐹𝐴) ⊆ (𝐹𝑥) ↔ (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1))))
98imbi2d 340 . . . 4 (𝑥 = (𝑘 + 1) → (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑥)) ↔ ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1)))))
10 fveq2 6840 . . . . . 6 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
1110sseq2d 3976 . . . . 5 (𝑥 = 𝐵 → ((𝐹𝐴) ⊆ (𝐹𝑥) ↔ (𝐹𝐴) ⊆ (𝐹𝐵)))
1211imbi2d 340 . . . 4 (𝑥 = 𝐵 → (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑥)) ↔ ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝐵))))
13 ssid 3966 . . . . 5 (𝐹𝐴) ⊆ (𝐹𝐴)
14132a1i 12 . . . 4 (𝐴 ∈ ℤ → ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝐴)))
15 eluznn 12853 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝐴)) → 𝑘 ∈ ℕ)
16 fveq2 6840 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
17 fvoveq1 7392 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝐹‘(𝑛 + 1)) = (𝐹‘(𝑘 + 1)))
1816, 17sseq12d 3977 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ↔ (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1))))
1918rspccva 3584 . . . . . . . . 9 ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)))
2015, 19sylan2 593 . . . . . . . 8 ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ (𝐴 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝐴))) → (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)))
2120anassrs 467 . . . . . . 7 (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)))
22 sstr2 3950 . . . . . . 7 ((𝐹𝐴) ⊆ (𝐹𝑘) → ((𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)) → (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1))))
2321, 22syl5com 31 . . . . . 6 (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → ((𝐹𝐴) ⊆ (𝐹𝑘) → (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1))))
2423expcom 413 . . . . 5 (𝑘 ∈ (ℤ𝐴) → ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → ((𝐹𝐴) ⊆ (𝐹𝑘) → (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1)))))
2524a2d 29 . . . 4 (𝑘 ∈ (ℤ𝐴) → (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑘)) → ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1)))))
263, 6, 9, 12, 14, 25uzind4 12841 . . 3 (𝐵 ∈ (ℤ𝐴) → ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝐵)))
2726com12 32 . 2 ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐵 ∈ (ℤ𝐴) → (𝐹𝐴) ⊆ (𝐹𝐵)))
2827impr 454 1 ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴))) → (𝐹𝐴) ⊆ (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3911  cfv 6499  (class class class)co 7369  1c1 11045   + caddc 11047  cn 12162  cz 12505  cuz 12769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770
This theorem is referenced by:  volsup  25490
  Copyright terms: Public domain W3C validator