Step | Hyp | Ref
| Expression |
1 | | fveq2 6768 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) |
2 | 1 | sseq2d 3957 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝐹‘𝐴) ⊆ (𝐹‘𝑥) ↔ (𝐹‘𝐴) ⊆ (𝐹‘𝐴))) |
3 | 2 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝐴 → (((∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹‘𝐴) ⊆ (𝐹‘𝑥)) ↔ ((∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹‘𝐴) ⊆ (𝐹‘𝐴)))) |
4 | | fveq2 6768 |
. . . . . 6
⊢ (𝑥 = 𝑘 → (𝐹‘𝑥) = (𝐹‘𝑘)) |
5 | 4 | sseq2d 3957 |
. . . . 5
⊢ (𝑥 = 𝑘 → ((𝐹‘𝐴) ⊆ (𝐹‘𝑥) ↔ (𝐹‘𝐴) ⊆ (𝐹‘𝑘))) |
6 | 5 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝑘 → (((∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹‘𝐴) ⊆ (𝐹‘𝑥)) ↔ ((∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹‘𝐴) ⊆ (𝐹‘𝑘)))) |
7 | | fveq2 6768 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → (𝐹‘𝑥) = (𝐹‘(𝑘 + 1))) |
8 | 7 | sseq2d 3957 |
. . . . 5
⊢ (𝑥 = (𝑘 + 1) → ((𝐹‘𝐴) ⊆ (𝐹‘𝑥) ↔ (𝐹‘𝐴) ⊆ (𝐹‘(𝑘 + 1)))) |
9 | 8 | imbi2d 340 |
. . . 4
⊢ (𝑥 = (𝑘 + 1) → (((∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹‘𝐴) ⊆ (𝐹‘𝑥)) ↔ ((∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹‘𝐴) ⊆ (𝐹‘(𝑘 + 1))))) |
10 | | fveq2 6768 |
. . . . . 6
⊢ (𝑥 = 𝐵 → (𝐹‘𝑥) = (𝐹‘𝐵)) |
11 | 10 | sseq2d 3957 |
. . . . 5
⊢ (𝑥 = 𝐵 → ((𝐹‘𝐴) ⊆ (𝐹‘𝑥) ↔ (𝐹‘𝐴) ⊆ (𝐹‘𝐵))) |
12 | 11 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝐵 → (((∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹‘𝐴) ⊆ (𝐹‘𝑥)) ↔ ((∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)))) |
13 | | ssid 3947 |
. . . . 5
⊢ (𝐹‘𝐴) ⊆ (𝐹‘𝐴) |
14 | 13 | 2a1i 12 |
. . . 4
⊢ (𝐴 ∈ ℤ →
((∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹‘𝐴) ⊆ (𝐹‘𝐴))) |
15 | | eluznn 12640 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘𝐴)) → 𝑘 ∈ ℕ) |
16 | | fveq2 6768 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) |
17 | | fvoveq1 7291 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → (𝐹‘(𝑛 + 1)) = (𝐹‘(𝑘 + 1))) |
18 | 16, 17 | sseq12d 3958 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → ((𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1)) ↔ (𝐹‘𝑘) ⊆ (𝐹‘(𝑘 + 1)))) |
19 | 18 | rspccva 3559 |
. . . . . . . . 9
⊢
((∀𝑛 ∈
ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ⊆ (𝐹‘(𝑘 + 1))) |
20 | 15, 19 | sylan2 592 |
. . . . . . . 8
⊢
((∀𝑛 ∈
ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ (𝐴 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝐴))) → (𝐹‘𝑘) ⊆ (𝐹‘(𝑘 + 1))) |
21 | 20 | anassrs 467 |
. . . . . . 7
⊢
(((∀𝑛 ∈
ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝐴)) → (𝐹‘𝑘) ⊆ (𝐹‘(𝑘 + 1))) |
22 | | sstr2 3932 |
. . . . . . 7
⊢ ((𝐹‘𝐴) ⊆ (𝐹‘𝑘) → ((𝐹‘𝑘) ⊆ (𝐹‘(𝑘 + 1)) → (𝐹‘𝐴) ⊆ (𝐹‘(𝑘 + 1)))) |
23 | 21, 22 | syl5com 31 |
. . . . . 6
⊢
(((∀𝑛 ∈
ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝐴)) → ((𝐹‘𝐴) ⊆ (𝐹‘𝑘) → (𝐹‘𝐴) ⊆ (𝐹‘(𝑘 + 1)))) |
24 | 23 | expcom 413 |
. . . . 5
⊢ (𝑘 ∈
(ℤ≥‘𝐴) → ((∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → ((𝐹‘𝐴) ⊆ (𝐹‘𝑘) → (𝐹‘𝐴) ⊆ (𝐹‘(𝑘 + 1))))) |
25 | 24 | a2d 29 |
. . . 4
⊢ (𝑘 ∈
(ℤ≥‘𝐴) → (((∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹‘𝐴) ⊆ (𝐹‘𝑘)) → ((∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹‘𝐴) ⊆ (𝐹‘(𝑘 + 1))))) |
26 | 3, 6, 9, 12, 14, 25 | uzind4 12628 |
. . 3
⊢ (𝐵 ∈
(ℤ≥‘𝐴) → ((∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵))) |
27 | 26 | com12 32 |
. 2
⊢
((∀𝑛 ∈
ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐵 ∈ (ℤ≥‘𝐴) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵))) |
28 | 27 | impr 454 |
1
⊢
((∀𝑛 ∈
ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴))) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) |