MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volsuplem Structured version   Visualization version   GIF version

Theorem volsuplem 24700
Description: Lemma for volsup 24701. (Contributed by Mario Carneiro, 4-Jul-2014.)
Assertion
Ref Expression
volsuplem ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴))) → (𝐹𝐴) ⊆ (𝐹𝐵))
Distinct variable group:   𝑛,𝐹
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)

Proof of Theorem volsuplem
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6768 . . . . . 6 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
21sseq2d 3957 . . . . 5 (𝑥 = 𝐴 → ((𝐹𝐴) ⊆ (𝐹𝑥) ↔ (𝐹𝐴) ⊆ (𝐹𝐴)))
32imbi2d 340 . . . 4 (𝑥 = 𝐴 → (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑥)) ↔ ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝐴))))
4 fveq2 6768 . . . . . 6 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
54sseq2d 3957 . . . . 5 (𝑥 = 𝑘 → ((𝐹𝐴) ⊆ (𝐹𝑥) ↔ (𝐹𝐴) ⊆ (𝐹𝑘)))
65imbi2d 340 . . . 4 (𝑥 = 𝑘 → (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑥)) ↔ ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑘))))
7 fveq2 6768 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
87sseq2d 3957 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝐹𝐴) ⊆ (𝐹𝑥) ↔ (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1))))
98imbi2d 340 . . . 4 (𝑥 = (𝑘 + 1) → (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑥)) ↔ ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1)))))
10 fveq2 6768 . . . . . 6 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
1110sseq2d 3957 . . . . 5 (𝑥 = 𝐵 → ((𝐹𝐴) ⊆ (𝐹𝑥) ↔ (𝐹𝐴) ⊆ (𝐹𝐵)))
1211imbi2d 340 . . . 4 (𝑥 = 𝐵 → (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑥)) ↔ ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝐵))))
13 ssid 3947 . . . . 5 (𝐹𝐴) ⊆ (𝐹𝐴)
14132a1i 12 . . . 4 (𝐴 ∈ ℤ → ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝐴)))
15 eluznn 12640 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝐴)) → 𝑘 ∈ ℕ)
16 fveq2 6768 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
17 fvoveq1 7291 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝐹‘(𝑛 + 1)) = (𝐹‘(𝑘 + 1)))
1816, 17sseq12d 3958 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ↔ (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1))))
1918rspccva 3559 . . . . . . . . 9 ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)))
2015, 19sylan2 592 . . . . . . . 8 ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ (𝐴 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝐴))) → (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)))
2120anassrs 467 . . . . . . 7 (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)))
22 sstr2 3932 . . . . . . 7 ((𝐹𝐴) ⊆ (𝐹𝑘) → ((𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)) → (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1))))
2321, 22syl5com 31 . . . . . 6 (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → ((𝐹𝐴) ⊆ (𝐹𝑘) → (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1))))
2423expcom 413 . . . . 5 (𝑘 ∈ (ℤ𝐴) → ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → ((𝐹𝐴) ⊆ (𝐹𝑘) → (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1)))))
2524a2d 29 . . . 4 (𝑘 ∈ (ℤ𝐴) → (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑘)) → ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1)))))
263, 6, 9, 12, 14, 25uzind4 12628 . . 3 (𝐵 ∈ (ℤ𝐴) → ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝐵)))
2726com12 32 . 2 ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐵 ∈ (ℤ𝐴) → (𝐹𝐴) ⊆ (𝐹𝐵)))
2827impr 454 1 ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴))) → (𝐹𝐴) ⊆ (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wral 3065  wss 3891  cfv 6430  (class class class)co 7268  1c1 10856   + caddc 10858  cn 11956  cz 12302  cuz 12564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-n0 12217  df-z 12303  df-uz 12565
This theorem is referenced by:  volsup  24701
  Copyright terms: Public domain W3C validator