MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volsuplem Structured version   Visualization version   GIF version

Theorem volsuplem 25502
Description: Lemma for volsup 25503. (Contributed by Mario Carneiro, 4-Jul-2014.)
Assertion
Ref Expression
volsuplem ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴))) → (𝐹𝐴) ⊆ (𝐹𝐵))
Distinct variable group:   𝑛,𝐹
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)

Proof of Theorem volsuplem
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6892 . . . . . 6 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
21sseq2d 4005 . . . . 5 (𝑥 = 𝐴 → ((𝐹𝐴) ⊆ (𝐹𝑥) ↔ (𝐹𝐴) ⊆ (𝐹𝐴)))
32imbi2d 339 . . . 4 (𝑥 = 𝐴 → (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑥)) ↔ ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝐴))))
4 fveq2 6892 . . . . . 6 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
54sseq2d 4005 . . . . 5 (𝑥 = 𝑘 → ((𝐹𝐴) ⊆ (𝐹𝑥) ↔ (𝐹𝐴) ⊆ (𝐹𝑘)))
65imbi2d 339 . . . 4 (𝑥 = 𝑘 → (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑥)) ↔ ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑘))))
7 fveq2 6892 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
87sseq2d 4005 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝐹𝐴) ⊆ (𝐹𝑥) ↔ (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1))))
98imbi2d 339 . . . 4 (𝑥 = (𝑘 + 1) → (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑥)) ↔ ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1)))))
10 fveq2 6892 . . . . . 6 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
1110sseq2d 4005 . . . . 5 (𝑥 = 𝐵 → ((𝐹𝐴) ⊆ (𝐹𝑥) ↔ (𝐹𝐴) ⊆ (𝐹𝐵)))
1211imbi2d 339 . . . 4 (𝑥 = 𝐵 → (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑥)) ↔ ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝐵))))
13 ssid 3995 . . . . 5 (𝐹𝐴) ⊆ (𝐹𝐴)
14132a1i 12 . . . 4 (𝐴 ∈ ℤ → ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝐴)))
15 eluznn 12932 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝐴)) → 𝑘 ∈ ℕ)
16 fveq2 6892 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
17 fvoveq1 7439 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝐹‘(𝑛 + 1)) = (𝐹‘(𝑘 + 1)))
1816, 17sseq12d 4006 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ↔ (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1))))
1918rspccva 3600 . . . . . . . . 9 ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)))
2015, 19sylan2 591 . . . . . . . 8 ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ (𝐴 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝐴))) → (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)))
2120anassrs 466 . . . . . . 7 (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)))
22 sstr2 3979 . . . . . . 7 ((𝐹𝐴) ⊆ (𝐹𝑘) → ((𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)) → (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1))))
2321, 22syl5com 31 . . . . . 6 (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → ((𝐹𝐴) ⊆ (𝐹𝑘) → (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1))))
2423expcom 412 . . . . 5 (𝑘 ∈ (ℤ𝐴) → ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → ((𝐹𝐴) ⊆ (𝐹𝑘) → (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1)))))
2524a2d 29 . . . 4 (𝑘 ∈ (ℤ𝐴) → (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑘)) → ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1)))))
263, 6, 9, 12, 14, 25uzind4 12920 . . 3 (𝐵 ∈ (ℤ𝐴) → ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝐵)))
2726com12 32 . 2 ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐵 ∈ (ℤ𝐴) → (𝐹𝐴) ⊆ (𝐹𝐵)))
2827impr 453 1 ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴))) → (𝐹𝐴) ⊆ (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3051  wss 3939  cfv 6543  (class class class)co 7416  1c1 11139   + caddc 11141  cn 12242  cz 12588  cuz 12852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-2nd 7992  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-n0 12503  df-z 12589  df-uz 12853
This theorem is referenced by:  volsup  25503
  Copyright terms: Public domain W3C validator