MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volsuplem Structured version   Visualization version   GIF version

Theorem volsuplem 24159
Description: Lemma for volsup 24160. (Contributed by Mario Carneiro, 4-Jul-2014.)
Assertion
Ref Expression
volsuplem ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴))) → (𝐹𝐴) ⊆ (𝐹𝐵))
Distinct variable group:   𝑛,𝐹
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)

Proof of Theorem volsuplem
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6645 . . . . . 6 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
21sseq2d 3947 . . . . 5 (𝑥 = 𝐴 → ((𝐹𝐴) ⊆ (𝐹𝑥) ↔ (𝐹𝐴) ⊆ (𝐹𝐴)))
32imbi2d 344 . . . 4 (𝑥 = 𝐴 → (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑥)) ↔ ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝐴))))
4 fveq2 6645 . . . . . 6 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
54sseq2d 3947 . . . . 5 (𝑥 = 𝑘 → ((𝐹𝐴) ⊆ (𝐹𝑥) ↔ (𝐹𝐴) ⊆ (𝐹𝑘)))
65imbi2d 344 . . . 4 (𝑥 = 𝑘 → (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑥)) ↔ ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑘))))
7 fveq2 6645 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
87sseq2d 3947 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝐹𝐴) ⊆ (𝐹𝑥) ↔ (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1))))
98imbi2d 344 . . . 4 (𝑥 = (𝑘 + 1) → (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑥)) ↔ ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1)))))
10 fveq2 6645 . . . . . 6 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
1110sseq2d 3947 . . . . 5 (𝑥 = 𝐵 → ((𝐹𝐴) ⊆ (𝐹𝑥) ↔ (𝐹𝐴) ⊆ (𝐹𝐵)))
1211imbi2d 344 . . . 4 (𝑥 = 𝐵 → (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑥)) ↔ ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝐵))))
13 ssid 3937 . . . . 5 (𝐹𝐴) ⊆ (𝐹𝐴)
14132a1i 12 . . . 4 (𝐴 ∈ ℤ → ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝐴)))
15 eluznn 12306 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝐴)) → 𝑘 ∈ ℕ)
16 fveq2 6645 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
17 fvoveq1 7158 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝐹‘(𝑛 + 1)) = (𝐹‘(𝑘 + 1)))
1816, 17sseq12d 3948 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ↔ (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1))))
1918rspccva 3570 . . . . . . . . 9 ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)))
2015, 19sylan2 595 . . . . . . . 8 ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ (𝐴 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝐴))) → (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)))
2120anassrs 471 . . . . . . 7 (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)))
22 sstr2 3922 . . . . . . 7 ((𝐹𝐴) ⊆ (𝐹𝑘) → ((𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)) → (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1))))
2321, 22syl5com 31 . . . . . 6 (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → ((𝐹𝐴) ⊆ (𝐹𝑘) → (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1))))
2423expcom 417 . . . . 5 (𝑘 ∈ (ℤ𝐴) → ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → ((𝐹𝐴) ⊆ (𝐹𝑘) → (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1)))))
2524a2d 29 . . . 4 (𝑘 ∈ (ℤ𝐴) → (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑘)) → ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1)))))
263, 6, 9, 12, 14, 25uzind4 12294 . . 3 (𝐵 ∈ (ℤ𝐴) → ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝐵)))
2726com12 32 . 2 ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐵 ∈ (ℤ𝐴) → (𝐹𝐴) ⊆ (𝐹𝐵)))
2827impr 458 1 ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴))) → (𝐹𝐴) ⊆ (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  wss 3881  cfv 6324  (class class class)co 7135  1c1 10527   + caddc 10529  cn 11625  cz 11969  cuz 12231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232
This theorem is referenced by:  volsup  24160
  Copyright terms: Public domain W3C validator