![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrrebnd | Structured version Visualization version GIF version |
Description: An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.) |
Ref | Expression |
---|---|
xrrebnd | ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnflt 13186 | . . 3 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
2 | ltpnf 13183 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | |
3 | 1, 2 | jca 511 | . 2 ⊢ (𝐴 ∈ ℝ → (-∞ < 𝐴 ∧ 𝐴 < +∞)) |
4 | nltpnft 13226 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) | |
5 | ngtmnft 13228 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) | |
6 | 4, 5 | orbi12d 917 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → ((𝐴 = +∞ ∨ 𝐴 = -∞) ↔ (¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴))) |
7 | ianor 982 | . . . . . 6 ⊢ (¬ (-∞ < 𝐴 ∧ 𝐴 < +∞) ↔ (¬ -∞ < 𝐴 ∨ ¬ 𝐴 < +∞)) | |
8 | orcom 869 | . . . . . 6 ⊢ ((¬ -∞ < 𝐴 ∨ ¬ 𝐴 < +∞) ↔ (¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴)) | |
9 | 7, 8 | bitr2i 276 | . . . . 5 ⊢ ((¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴) ↔ ¬ (-∞ < 𝐴 ∧ 𝐴 < +∞)) |
10 | 6, 9 | bitrdi 287 | . . . 4 ⊢ (𝐴 ∈ ℝ* → ((𝐴 = +∞ ∨ 𝐴 = -∞) ↔ ¬ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
11 | 10 | con2bid 354 | . . 3 ⊢ (𝐴 ∈ ℝ* → ((-∞ < 𝐴 ∧ 𝐴 < +∞) ↔ ¬ (𝐴 = +∞ ∨ 𝐴 = -∞))) |
12 | elxr 13179 | . . . . 5 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
13 | 3orass 1090 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ (𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞))) | |
14 | orcom 869 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞)) ↔ ((𝐴 = +∞ ∨ 𝐴 = -∞) ∨ 𝐴 ∈ ℝ)) | |
15 | 13, 14 | bitri 275 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ ((𝐴 = +∞ ∨ 𝐴 = -∞) ∨ 𝐴 ∈ ℝ)) |
16 | 12, 15 | sylbb 219 | . . . 4 ⊢ (𝐴 ∈ ℝ* → ((𝐴 = +∞ ∨ 𝐴 = -∞) ∨ 𝐴 ∈ ℝ)) |
17 | 16 | ord 863 | . . 3 ⊢ (𝐴 ∈ ℝ* → (¬ (𝐴 = +∞ ∨ 𝐴 = -∞) → 𝐴 ∈ ℝ)) |
18 | 11, 17 | sylbid 240 | . 2 ⊢ (𝐴 ∈ ℝ* → ((-∞ < 𝐴 ∧ 𝐴 < +∞) → 𝐴 ∈ ℝ)) |
19 | 3, 18 | impbid2 226 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 ∨ w3o 1086 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ℝcr 11183 +∞cpnf 11321 -∞cmnf 11322 ℝ*cxr 11323 < clt 11324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 |
This theorem is referenced by: xrre 13231 xrre2 13232 xrre3 13233 supxrre1 13392 elioc2 13470 elico2 13471 elicc2 13472 xblpnfps 24426 xblpnf 24427 isnghm3 24767 ovoliun 25559 ovolicopnf 25578 voliunlem3 25606 volsup 25610 itg2seq 25797 nmblore 30818 nmopre 31902 supxrgere 45248 supxrgelem 45252 supxrge 45253 suplesup 45254 infrpge 45266 limsupre 45562 |
Copyright terms: Public domain | W3C validator |