MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrrebnd Structured version   Visualization version   GIF version

Theorem xrrebnd 13206
Description: An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
xrrebnd (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))

Proof of Theorem xrrebnd
StepHypRef Expression
1 mnflt 13162 . . 3 (𝐴 ∈ ℝ → -∞ < 𝐴)
2 ltpnf 13159 . . 3 (𝐴 ∈ ℝ → 𝐴 < +∞)
31, 2jca 511 . 2 (𝐴 ∈ ℝ → (-∞ < 𝐴𝐴 < +∞))
4 nltpnft 13202 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
5 ngtmnft 13204 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
64, 5orbi12d 918 . . . . 5 (𝐴 ∈ ℝ* → ((𝐴 = +∞ ∨ 𝐴 = -∞) ↔ (¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴)))
7 ianor 983 . . . . . 6 (¬ (-∞ < 𝐴𝐴 < +∞) ↔ (¬ -∞ < 𝐴 ∨ ¬ 𝐴 < +∞))
8 orcom 870 . . . . . 6 ((¬ -∞ < 𝐴 ∨ ¬ 𝐴 < +∞) ↔ (¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴))
97, 8bitr2i 276 . . . . 5 ((¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴) ↔ ¬ (-∞ < 𝐴𝐴 < +∞))
106, 9bitrdi 287 . . . 4 (𝐴 ∈ ℝ* → ((𝐴 = +∞ ∨ 𝐴 = -∞) ↔ ¬ (-∞ < 𝐴𝐴 < +∞)))
1110con2bid 354 . . 3 (𝐴 ∈ ℝ* → ((-∞ < 𝐴𝐴 < +∞) ↔ ¬ (𝐴 = +∞ ∨ 𝐴 = -∞)))
12 elxr 13155 . . . . 5 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
13 3orass 1089 . . . . . 6 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ (𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞)))
14 orcom 870 . . . . . 6 ((𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞)) ↔ ((𝐴 = +∞ ∨ 𝐴 = -∞) ∨ 𝐴 ∈ ℝ))
1513, 14bitri 275 . . . . 5 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ ((𝐴 = +∞ ∨ 𝐴 = -∞) ∨ 𝐴 ∈ ℝ))
1612, 15sylbb 219 . . . 4 (𝐴 ∈ ℝ* → ((𝐴 = +∞ ∨ 𝐴 = -∞) ∨ 𝐴 ∈ ℝ))
1716ord 864 . . 3 (𝐴 ∈ ℝ* → (¬ (𝐴 = +∞ ∨ 𝐴 = -∞) → 𝐴 ∈ ℝ))
1811, 17sylbid 240 . 2 (𝐴 ∈ ℝ* → ((-∞ < 𝐴𝐴 < +∞) → 𝐴 ∈ ℝ))
193, 18impbid2 226 1 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1536  wcel 2105   class class class wbr 5147  cr 11151  +∞cpnf 11289  -∞cmnf 11290  *cxr 11291   < clt 11292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-pre-lttri 11226  ax-pre-lttrn 11227
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298
This theorem is referenced by:  xrre  13207  xrre2  13208  xrre3  13209  supxrre1  13368  elioc2  13446  elico2  13447  elicc2  13448  xblpnfps  24420  xblpnf  24421  isnghm3  24761  ovoliun  25553  ovolicopnf  25572  voliunlem3  25600  volsup  25604  itg2seq  25791  nmblore  30814  nmopre  31898  supxrgere  45282  supxrgelem  45286  supxrge  45287  suplesup  45288  infrpge  45300  limsupre  45596
  Copyright terms: Public domain W3C validator