| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrrebnd | Structured version Visualization version GIF version | ||
| Description: An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.) |
| Ref | Expression |
|---|---|
| xrrebnd | ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnflt 13043 | . . 3 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
| 2 | ltpnf 13040 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝐴 ∈ ℝ → (-∞ < 𝐴 ∧ 𝐴 < +∞)) |
| 4 | nltpnft 13084 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) | |
| 5 | ngtmnft 13086 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) | |
| 6 | 4, 5 | orbi12d 918 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → ((𝐴 = +∞ ∨ 𝐴 = -∞) ↔ (¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴))) |
| 7 | ianor 983 | . . . . . 6 ⊢ (¬ (-∞ < 𝐴 ∧ 𝐴 < +∞) ↔ (¬ -∞ < 𝐴 ∨ ¬ 𝐴 < +∞)) | |
| 8 | orcom 870 | . . . . . 6 ⊢ ((¬ -∞ < 𝐴 ∨ ¬ 𝐴 < +∞) ↔ (¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴)) | |
| 9 | 7, 8 | bitr2i 276 | . . . . 5 ⊢ ((¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴) ↔ ¬ (-∞ < 𝐴 ∧ 𝐴 < +∞)) |
| 10 | 6, 9 | bitrdi 287 | . . . 4 ⊢ (𝐴 ∈ ℝ* → ((𝐴 = +∞ ∨ 𝐴 = -∞) ↔ ¬ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
| 11 | 10 | con2bid 354 | . . 3 ⊢ (𝐴 ∈ ℝ* → ((-∞ < 𝐴 ∧ 𝐴 < +∞) ↔ ¬ (𝐴 = +∞ ∨ 𝐴 = -∞))) |
| 12 | elxr 13036 | . . . . 5 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
| 13 | 3orass 1089 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ (𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞))) | |
| 14 | orcom 870 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞)) ↔ ((𝐴 = +∞ ∨ 𝐴 = -∞) ∨ 𝐴 ∈ ℝ)) | |
| 15 | 13, 14 | bitri 275 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ ((𝐴 = +∞ ∨ 𝐴 = -∞) ∨ 𝐴 ∈ ℝ)) |
| 16 | 12, 15 | sylbb 219 | . . . 4 ⊢ (𝐴 ∈ ℝ* → ((𝐴 = +∞ ∨ 𝐴 = -∞) ∨ 𝐴 ∈ ℝ)) |
| 17 | 16 | ord 864 | . . 3 ⊢ (𝐴 ∈ ℝ* → (¬ (𝐴 = +∞ ∨ 𝐴 = -∞) → 𝐴 ∈ ℝ)) |
| 18 | 11, 17 | sylbid 240 | . 2 ⊢ (𝐴 ∈ ℝ* → ((-∞ < 𝐴 ∧ 𝐴 < +∞) → 𝐴 ∈ ℝ)) |
| 19 | 3, 18 | impbid2 226 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 ℝcr 11027 +∞cpnf 11165 -∞cmnf 11166 ℝ*cxr 11167 < clt 11168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 |
| This theorem is referenced by: xrre 13089 xrre2 13090 xrre3 13091 supxrre1 13250 elioc2 13330 elico2 13331 elicc2 13332 xblpnfps 24299 xblpnf 24300 isnghm3 24629 ovoliun 25422 ovolicopnf 25441 voliunlem3 25469 volsup 25473 itg2seq 25659 nmblore 30748 nmopre 31832 supxrgere 45313 supxrgelem 45317 supxrge 45318 suplesup 45319 infrpge 45331 limsupre 45623 |
| Copyright terms: Public domain | W3C validator |