MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrrebnd Structured version   Visualization version   GIF version

Theorem xrrebnd 13210
Description: An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
xrrebnd (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))

Proof of Theorem xrrebnd
StepHypRef Expression
1 mnflt 13165 . . 3 (𝐴 ∈ ℝ → -∞ < 𝐴)
2 ltpnf 13162 . . 3 (𝐴 ∈ ℝ → 𝐴 < +∞)
31, 2jca 511 . 2 (𝐴 ∈ ℝ → (-∞ < 𝐴𝐴 < +∞))
4 nltpnft 13206 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
5 ngtmnft 13208 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
64, 5orbi12d 919 . . . . 5 (𝐴 ∈ ℝ* → ((𝐴 = +∞ ∨ 𝐴 = -∞) ↔ (¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴)))
7 ianor 984 . . . . . 6 (¬ (-∞ < 𝐴𝐴 < +∞) ↔ (¬ -∞ < 𝐴 ∨ ¬ 𝐴 < +∞))
8 orcom 871 . . . . . 6 ((¬ -∞ < 𝐴 ∨ ¬ 𝐴 < +∞) ↔ (¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴))
97, 8bitr2i 276 . . . . 5 ((¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴) ↔ ¬ (-∞ < 𝐴𝐴 < +∞))
106, 9bitrdi 287 . . . 4 (𝐴 ∈ ℝ* → ((𝐴 = +∞ ∨ 𝐴 = -∞) ↔ ¬ (-∞ < 𝐴𝐴 < +∞)))
1110con2bid 354 . . 3 (𝐴 ∈ ℝ* → ((-∞ < 𝐴𝐴 < +∞) ↔ ¬ (𝐴 = +∞ ∨ 𝐴 = -∞)))
12 elxr 13158 . . . . 5 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
13 3orass 1090 . . . . . 6 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ (𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞)))
14 orcom 871 . . . . . 6 ((𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞)) ↔ ((𝐴 = +∞ ∨ 𝐴 = -∞) ∨ 𝐴 ∈ ℝ))
1513, 14bitri 275 . . . . 5 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ ((𝐴 = +∞ ∨ 𝐴 = -∞) ∨ 𝐴 ∈ ℝ))
1612, 15sylbb 219 . . . 4 (𝐴 ∈ ℝ* → ((𝐴 = +∞ ∨ 𝐴 = -∞) ∨ 𝐴 ∈ ℝ))
1716ord 865 . . 3 (𝐴 ∈ ℝ* → (¬ (𝐴 = +∞ ∨ 𝐴 = -∞) → 𝐴 ∈ ℝ))
1811, 17sylbid 240 . 2 (𝐴 ∈ ℝ* → ((-∞ < 𝐴𝐴 < +∞) → 𝐴 ∈ ℝ))
193, 18impbid2 226 1 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3o 1086   = wceq 1540  wcel 2108   class class class wbr 5143  cr 11154  +∞cpnf 11292  -∞cmnf 11293  *cxr 11294   < clt 11295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301
This theorem is referenced by:  xrre  13211  xrre2  13212  xrre3  13213  supxrre1  13372  elioc2  13450  elico2  13451  elicc2  13452  xblpnfps  24405  xblpnf  24406  isnghm3  24746  ovoliun  25540  ovolicopnf  25559  voliunlem3  25587  volsup  25591  itg2seq  25777  nmblore  30805  nmopre  31889  supxrgere  45344  supxrgelem  45348  supxrge  45349  suplesup  45350  infrpge  45362  limsupre  45656
  Copyright terms: Public domain W3C validator