Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrrebnd | Structured version Visualization version GIF version |
Description: An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.) |
Ref | Expression |
---|---|
xrrebnd | ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnflt 12601 | . . 3 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
2 | ltpnf 12598 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | |
3 | 1, 2 | jca 515 | . 2 ⊢ (𝐴 ∈ ℝ → (-∞ < 𝐴 ∧ 𝐴 < +∞)) |
4 | nltpnft 12640 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) | |
5 | ngtmnft 12642 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) | |
6 | 4, 5 | orbi12d 918 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → ((𝐴 = +∞ ∨ 𝐴 = -∞) ↔ (¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴))) |
7 | ianor 981 | . . . . . 6 ⊢ (¬ (-∞ < 𝐴 ∧ 𝐴 < +∞) ↔ (¬ -∞ < 𝐴 ∨ ¬ 𝐴 < +∞)) | |
8 | orcom 869 | . . . . . 6 ⊢ ((¬ -∞ < 𝐴 ∨ ¬ 𝐴 < +∞) ↔ (¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴)) | |
9 | 7, 8 | bitr2i 279 | . . . . 5 ⊢ ((¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴) ↔ ¬ (-∞ < 𝐴 ∧ 𝐴 < +∞)) |
10 | 6, 9 | bitrdi 290 | . . . 4 ⊢ (𝐴 ∈ ℝ* → ((𝐴 = +∞ ∨ 𝐴 = -∞) ↔ ¬ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
11 | 10 | con2bid 358 | . . 3 ⊢ (𝐴 ∈ ℝ* → ((-∞ < 𝐴 ∧ 𝐴 < +∞) ↔ ¬ (𝐴 = +∞ ∨ 𝐴 = -∞))) |
12 | elxr 12594 | . . . . 5 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
13 | 3orass 1091 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ (𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞))) | |
14 | orcom 869 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞)) ↔ ((𝐴 = +∞ ∨ 𝐴 = -∞) ∨ 𝐴 ∈ ℝ)) | |
15 | 13, 14 | bitri 278 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ ((𝐴 = +∞ ∨ 𝐴 = -∞) ∨ 𝐴 ∈ ℝ)) |
16 | 12, 15 | sylbb 222 | . . . 4 ⊢ (𝐴 ∈ ℝ* → ((𝐴 = +∞ ∨ 𝐴 = -∞) ∨ 𝐴 ∈ ℝ)) |
17 | 16 | ord 863 | . . 3 ⊢ (𝐴 ∈ ℝ* → (¬ (𝐴 = +∞ ∨ 𝐴 = -∞) → 𝐴 ∈ ℝ)) |
18 | 11, 17 | sylbid 243 | . 2 ⊢ (𝐴 ∈ ℝ* → ((-∞ < 𝐴 ∧ 𝐴 < +∞) → 𝐴 ∈ ℝ)) |
19 | 3, 18 | impbid2 229 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 846 ∨ w3o 1087 = wceq 1542 ∈ wcel 2114 class class class wbr 5030 ℝcr 10614 +∞cpnf 10750 -∞cmnf 10751 ℝ*cxr 10752 < clt 10753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-pre-lttri 10689 ax-pre-lttrn 10690 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-po 5442 df-so 5443 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 |
This theorem is referenced by: xrre 12645 xrre2 12646 xrre3 12647 supxrre1 12806 elioc2 12884 elico2 12885 elicc2 12886 xblpnfps 23148 xblpnf 23149 isnghm3 23478 ovoliun 24257 ovolicopnf 24276 voliunlem3 24304 volsup 24308 itg2seq 24495 nmblore 28721 nmopre 29805 supxrgere 42410 supxrgelem 42414 supxrge 42415 suplesup 42416 infrpge 42428 limsupre 42724 |
Copyright terms: Public domain | W3C validator |