MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrrebnd Structured version   Visualization version   GIF version

Theorem xrrebnd 13144
Description: An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
xrrebnd (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))

Proof of Theorem xrrebnd
StepHypRef Expression
1 mnflt 13100 . . 3 (𝐴 ∈ ℝ → -∞ < 𝐴)
2 ltpnf 13097 . . 3 (𝐴 ∈ ℝ → 𝐴 < +∞)
31, 2jca 511 . 2 (𝐴 ∈ ℝ → (-∞ < 𝐴𝐴 < +∞))
4 nltpnft 13140 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
5 ngtmnft 13142 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
64, 5orbi12d 915 . . . . 5 (𝐴 ∈ ℝ* → ((𝐴 = +∞ ∨ 𝐴 = -∞) ↔ (¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴)))
7 ianor 978 . . . . . 6 (¬ (-∞ < 𝐴𝐴 < +∞) ↔ (¬ -∞ < 𝐴 ∨ ¬ 𝐴 < +∞))
8 orcom 867 . . . . . 6 ((¬ -∞ < 𝐴 ∨ ¬ 𝐴 < +∞) ↔ (¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴))
97, 8bitr2i 276 . . . . 5 ((¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴) ↔ ¬ (-∞ < 𝐴𝐴 < +∞))
106, 9bitrdi 287 . . . 4 (𝐴 ∈ ℝ* → ((𝐴 = +∞ ∨ 𝐴 = -∞) ↔ ¬ (-∞ < 𝐴𝐴 < +∞)))
1110con2bid 354 . . 3 (𝐴 ∈ ℝ* → ((-∞ < 𝐴𝐴 < +∞) ↔ ¬ (𝐴 = +∞ ∨ 𝐴 = -∞)))
12 elxr 13093 . . . . 5 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
13 3orass 1087 . . . . . 6 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ (𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞)))
14 orcom 867 . . . . . 6 ((𝐴 ∈ ℝ ∨ (𝐴 = +∞ ∨ 𝐴 = -∞)) ↔ ((𝐴 = +∞ ∨ 𝐴 = -∞) ∨ 𝐴 ∈ ℝ))
1513, 14bitri 275 . . . . 5 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ ((𝐴 = +∞ ∨ 𝐴 = -∞) ∨ 𝐴 ∈ ℝ))
1612, 15sylbb 218 . . . 4 (𝐴 ∈ ℝ* → ((𝐴 = +∞ ∨ 𝐴 = -∞) ∨ 𝐴 ∈ ℝ))
1716ord 861 . . 3 (𝐴 ∈ ℝ* → (¬ (𝐴 = +∞ ∨ 𝐴 = -∞) → 𝐴 ∈ ℝ))
1811, 17sylbid 239 . 2 (𝐴 ∈ ℝ* → ((-∞ < 𝐴𝐴 < +∞) → 𝐴 ∈ ℝ))
193, 18impbid2 225 1 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844  w3o 1083   = wceq 1533  wcel 2098   class class class wbr 5138  cr 11105  +∞cpnf 11242  -∞cmnf 11243  *cxr 11244   < clt 11245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-pre-lttri 11180  ax-pre-lttrn 11181
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-po 5578  df-so 5579  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251
This theorem is referenced by:  xrre  13145  xrre2  13146  xrre3  13147  supxrre1  13306  elioc2  13384  elico2  13385  elicc2  13386  xblpnfps  24223  xblpnf  24224  isnghm3  24564  ovoliun  25356  ovolicopnf  25375  voliunlem3  25403  volsup  25407  itg2seq  25594  nmblore  30508  nmopre  31592  supxrgere  44528  supxrgelem  44532  supxrge  44533  suplesup  44534  infrpge  44546  limsupre  44842
  Copyright terms: Public domain W3C validator