MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddf Structured version   Visualization version   GIF version

Theorem xaddf 12257
Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
xaddf +𝑒 :(ℝ* × ℝ*)⟶ℝ*

Proof of Theorem xaddf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 10340 . . . . . 6 0 ∈ ℝ*
2 pnfxr 10346 . . . . . 6 +∞ ∈ ℝ*
31, 2ifcli 4289 . . . . 5 if(𝑦 = -∞, 0, +∞) ∈ ℝ*
43a1i 11 . . . 4 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥 = +∞) → if(𝑦 = -∞, 0, +∞) ∈ ℝ*)
5 mnfxr 10350 . . . . . . 7 -∞ ∈ ℝ*
61, 5ifcli 4289 . . . . . 6 if(𝑦 = +∞, 0, -∞) ∈ ℝ*
76a1i 11 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ 𝑥 = -∞) → if(𝑦 = +∞, 0, -∞) ∈ ℝ*)
82a1i 11 . . . . . . . 8 ((((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ 𝑦 ∈ ℝ*) ∧ 𝑦 = +∞) → +∞ ∈ ℝ*)
95a1i 11 . . . . . . . . 9 (((((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ 𝑦 ∈ ℝ*) ∧ ¬ 𝑦 = +∞) ∧ 𝑦 = -∞) → -∞ ∈ ℝ*)
10 ioran 1006 . . . . . . . . . . . . . 14 (¬ (𝑥 = +∞ ∨ 𝑥 = -∞) ↔ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞))
11 elxr 12150 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ* ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞))
12 3orass 1110 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞) ↔ (𝑥 ∈ ℝ ∨ (𝑥 = +∞ ∨ 𝑥 = -∞)))
1311, 12sylbb 210 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ* → (𝑥 ∈ ℝ ∨ (𝑥 = +∞ ∨ 𝑥 = -∞)))
1413ord 890 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ* → (¬ 𝑥 ∈ ℝ → (𝑥 = +∞ ∨ 𝑥 = -∞)))
1514con1d 141 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ* → (¬ (𝑥 = +∞ ∨ 𝑥 = -∞) → 𝑥 ∈ ℝ))
1615imp 395 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ* ∧ ¬ (𝑥 = +∞ ∨ 𝑥 = -∞)) → 𝑥 ∈ ℝ)
1710, 16sylan2br 588 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) → 𝑥 ∈ ℝ)
18 ioran 1006 . . . . . . . . . . . . . 14 (¬ (𝑦 = +∞ ∨ 𝑦 = -∞) ↔ (¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞))
19 elxr 12150 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℝ* ↔ (𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞))
20 3orass 1110 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞) ↔ (𝑦 ∈ ℝ ∨ (𝑦 = +∞ ∨ 𝑦 = -∞)))
2119, 20sylbb 210 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ* → (𝑦 ∈ ℝ ∨ (𝑦 = +∞ ∨ 𝑦 = -∞)))
2221ord 890 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ* → (¬ 𝑦 ∈ ℝ → (𝑦 = +∞ ∨ 𝑦 = -∞)))
2322con1d 141 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ* → (¬ (𝑦 = +∞ ∨ 𝑦 = -∞) → 𝑦 ∈ ℝ))
2423imp 395 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ* ∧ ¬ (𝑦 = +∞ ∨ 𝑦 = -∞)) → 𝑦 ∈ ℝ)
2518, 24sylan2br 588 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ* ∧ (¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞)) → 𝑦 ∈ ℝ)
26 readdcl 10272 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
2717, 25, 26syl2an 589 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ (𝑦 ∈ ℝ* ∧ (¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞))) → (𝑥 + 𝑦) ∈ ℝ)
2827rexrd 10343 . . . . . . . . . . 11 (((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ (𝑦 ∈ ℝ* ∧ (¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞))) → (𝑥 + 𝑦) ∈ ℝ*)
2928anassrs 459 . . . . . . . . . 10 ((((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ 𝑦 ∈ ℝ*) ∧ (¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞)) → (𝑥 + 𝑦) ∈ ℝ*)
3029anassrs 459 . . . . . . . . 9 (((((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ 𝑦 ∈ ℝ*) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → (𝑥 + 𝑦) ∈ ℝ*)
319, 30ifclda 4277 . . . . . . . 8 ((((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ 𝑦 ∈ ℝ*) ∧ ¬ 𝑦 = +∞) → if(𝑦 = -∞, -∞, (𝑥 + 𝑦)) ∈ ℝ*)
328, 31ifclda 4277 . . . . . . 7 (((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ 𝑦 ∈ ℝ*) → if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))) ∈ ℝ*)
3332an32s 642 . . . . . 6 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) → if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))) ∈ ℝ*)
3433anassrs 459 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) → if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))) ∈ ℝ*)
357, 34ifclda 4277 . . . 4 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) → if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦)))) ∈ ℝ*)
364, 35ifclda 4277 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))) ∈ ℝ*)
3736rgen2a 3124 . 2 𝑥 ∈ ℝ*𝑦 ∈ ℝ* if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))) ∈ ℝ*
38 df-xadd 12147 . . 3 +𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))))
3938fmpt2 7438 . 2 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))) ∈ ℝ* ↔ +𝑒 :(ℝ* × ℝ*)⟶ℝ*)
4037, 39mpbi 221 1 +𝑒 :(ℝ* × ℝ*)⟶ℝ*
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 384  wo 873  w3o 1106   = wceq 1652  wcel 2155  wral 3055  ifcif 4243   × cxp 5275  wf 6064  (class class class)co 6842  cr 10188  0cc0 10189   + caddc 10192  +∞cpnf 10325  -∞cmnf 10326  *cxr 10327   +𝑒 cxad 12144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-1cn 10247  ax-addrcl 10250  ax-rnegex 10260  ax-cnre 10262
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-fv 6076  df-oprab 6846  df-mpt2 6847  df-1st 7366  df-2nd 7367  df-pnf 10330  df-mnf 10331  df-xr 10332  df-xadd 12147
This theorem is referenced by:  xaddcl  12272  xrsadd  20036  xrofsup  29982  xrge0pluscn  30433  xrge0tmdOLD  30438
  Copyright terms: Public domain W3C validator