MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddf Structured version   Visualization version   GIF version

Theorem xaddf 13266
Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
xaddf +𝑒 :(ℝ* × ℝ*)⟶ℝ*

Proof of Theorem xaddf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 11308 . . . . . 6 0 ∈ ℝ*
2 pnfxr 11315 . . . . . 6 +∞ ∈ ℝ*
31, 2ifcli 4573 . . . . 5 if(𝑦 = -∞, 0, +∞) ∈ ℝ*
43a1i 11 . . . 4 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥 = +∞) → if(𝑦 = -∞, 0, +∞) ∈ ℝ*)
5 mnfxr 11318 . . . . . . 7 -∞ ∈ ℝ*
61, 5ifcli 4573 . . . . . 6 if(𝑦 = +∞, 0, -∞) ∈ ℝ*
76a1i 11 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ 𝑥 = -∞) → if(𝑦 = +∞, 0, -∞) ∈ ℝ*)
82a1i 11 . . . . . . . 8 ((((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ 𝑦 ∈ ℝ*) ∧ 𝑦 = +∞) → +∞ ∈ ℝ*)
95a1i 11 . . . . . . . . 9 (((((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ 𝑦 ∈ ℝ*) ∧ ¬ 𝑦 = +∞) ∧ 𝑦 = -∞) → -∞ ∈ ℝ*)
10 ioran 986 . . . . . . . . . . . . . 14 (¬ (𝑥 = +∞ ∨ 𝑥 = -∞) ↔ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞))
11 elxr 13158 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ* ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞))
12 3orass 1090 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞) ↔ (𝑥 ∈ ℝ ∨ (𝑥 = +∞ ∨ 𝑥 = -∞)))
1311, 12sylbb 219 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ* → (𝑥 ∈ ℝ ∨ (𝑥 = +∞ ∨ 𝑥 = -∞)))
1413ord 865 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ* → (¬ 𝑥 ∈ ℝ → (𝑥 = +∞ ∨ 𝑥 = -∞)))
1514con1d 145 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ* → (¬ (𝑥 = +∞ ∨ 𝑥 = -∞) → 𝑥 ∈ ℝ))
1615imp 406 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ* ∧ ¬ (𝑥 = +∞ ∨ 𝑥 = -∞)) → 𝑥 ∈ ℝ)
1710, 16sylan2br 595 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) → 𝑥 ∈ ℝ)
18 ioran 986 . . . . . . . . . . . . . 14 (¬ (𝑦 = +∞ ∨ 𝑦 = -∞) ↔ (¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞))
19 elxr 13158 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℝ* ↔ (𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞))
20 3orass 1090 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞) ↔ (𝑦 ∈ ℝ ∨ (𝑦 = +∞ ∨ 𝑦 = -∞)))
2119, 20sylbb 219 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ* → (𝑦 ∈ ℝ ∨ (𝑦 = +∞ ∨ 𝑦 = -∞)))
2221ord 865 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ* → (¬ 𝑦 ∈ ℝ → (𝑦 = +∞ ∨ 𝑦 = -∞)))
2322con1d 145 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ* → (¬ (𝑦 = +∞ ∨ 𝑦 = -∞) → 𝑦 ∈ ℝ))
2423imp 406 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ* ∧ ¬ (𝑦 = +∞ ∨ 𝑦 = -∞)) → 𝑦 ∈ ℝ)
2518, 24sylan2br 595 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ* ∧ (¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞)) → 𝑦 ∈ ℝ)
26 readdcl 11238 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
2717, 25, 26syl2an 596 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ (𝑦 ∈ ℝ* ∧ (¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞))) → (𝑥 + 𝑦) ∈ ℝ)
2827rexrd 11311 . . . . . . . . . . 11 (((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ (𝑦 ∈ ℝ* ∧ (¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞))) → (𝑥 + 𝑦) ∈ ℝ*)
2928anassrs 467 . . . . . . . . . 10 ((((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ 𝑦 ∈ ℝ*) ∧ (¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞)) → (𝑥 + 𝑦) ∈ ℝ*)
3029anassrs 467 . . . . . . . . 9 (((((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ 𝑦 ∈ ℝ*) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → (𝑥 + 𝑦) ∈ ℝ*)
319, 30ifclda 4561 . . . . . . . 8 ((((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ 𝑦 ∈ ℝ*) ∧ ¬ 𝑦 = +∞) → if(𝑦 = -∞, -∞, (𝑥 + 𝑦)) ∈ ℝ*)
328, 31ifclda 4561 . . . . . . 7 (((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ 𝑦 ∈ ℝ*) → if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))) ∈ ℝ*)
3332an32s 652 . . . . . 6 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) → if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))) ∈ ℝ*)
3433anassrs 467 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) → if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))) ∈ ℝ*)
357, 34ifclda 4561 . . . 4 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) → if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦)))) ∈ ℝ*)
364, 35ifclda 4561 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))) ∈ ℝ*)
3736rgen2 3199 . 2 𝑥 ∈ ℝ*𝑦 ∈ ℝ* if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))) ∈ ℝ*
38 df-xadd 13155 . . 3 +𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))))
3938fmpo 8093 . 2 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))) ∈ ℝ* ↔ +𝑒 :(ℝ* × ℝ*)⟶ℝ*)
4037, 39mpbi 230 1 +𝑒 :(ℝ* × ℝ*)⟶ℝ*
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 848  w3o 1086   = wceq 1540  wcel 2108  wral 3061  ifcif 4525   × cxp 5683  wf 6557  (class class class)co 7431  cr 11154  0cc0 11155   + caddc 11158  +∞cpnf 11292  -∞cmnf 11293  *cxr 11294   +𝑒 cxad 13152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-1cn 11213  ax-addrcl 11216  ax-rnegex 11226  ax-cnre 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-pnf 11297  df-mnf 11298  df-xr 11299  df-xadd 13155
This theorem is referenced by:  xaddcl  13281  xrsadd  21397  xrofsup  32771  xrge0pluscn  33939  xrge0tmdALT  33945
  Copyright terms: Public domain W3C validator