Step | Hyp | Ref
| Expression |
1 | | 0xr 11022 |
. . . . . 6
⊢ 0 ∈
ℝ* |
2 | | pnfxr 11029 |
. . . . . 6
⊢ +∞
∈ ℝ* |
3 | 1, 2 | ifcli 4506 |
. . . . 5
⊢ if(𝑦 = -∞, 0, +∞) ∈
ℝ* |
4 | 3 | a1i 11 |
. . . 4
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑥 = +∞) → if(𝑦 = -∞, 0, +∞) ∈
ℝ*) |
5 | | mnfxr 11032 |
. . . . . . 7
⊢ -∞
∈ ℝ* |
6 | 1, 5 | ifcli 4506 |
. . . . . 6
⊢ if(𝑦 = +∞, 0, -∞) ∈
ℝ* |
7 | 6 | a1i 11 |
. . . . 5
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ ¬ 𝑥 = +∞) ∧ 𝑥 = -∞) → if(𝑦 = +∞, 0, -∞) ∈
ℝ*) |
8 | 2 | a1i 11 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ℝ*
∧ (¬ 𝑥 = +∞
∧ ¬ 𝑥 = -∞))
∧ 𝑦 ∈
ℝ*) ∧ 𝑦 = +∞) → +∞ ∈
ℝ*) |
9 | 5 | a1i 11 |
. . . . . . . . 9
⊢
(((((𝑥 ∈
ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ 𝑦 ∈ ℝ*) ∧ ¬
𝑦 = +∞) ∧ 𝑦 = -∞) → -∞
∈ ℝ*) |
10 | | ioran 981 |
. . . . . . . . . . . . . 14
⊢ (¬
(𝑥 = +∞ ∨ 𝑥 = -∞) ↔ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) |
11 | | elxr 12852 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℝ*
↔ (𝑥 ∈ ℝ
∨ 𝑥 = +∞ ∨
𝑥 =
-∞)) |
12 | | 3orass 1089 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞) ↔ (𝑥 ∈ ℝ ∨ (𝑥 = +∞ ∨ 𝑥 = -∞))) |
13 | 11, 12 | sylbb 218 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℝ*
→ (𝑥 ∈ ℝ
∨ (𝑥 = +∞ ∨
𝑥 =
-∞))) |
14 | 13 | ord 861 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℝ*
→ (¬ 𝑥 ∈
ℝ → (𝑥 =
+∞ ∨ 𝑥 =
-∞))) |
15 | 14 | con1d 145 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ*
→ (¬ (𝑥 = +∞
∨ 𝑥 = -∞) →
𝑥 ∈
ℝ)) |
16 | 15 | imp 407 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ*
∧ ¬ (𝑥 = +∞
∨ 𝑥 = -∞)) →
𝑥 ∈
ℝ) |
17 | 10, 16 | sylan2br 595 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ*
∧ (¬ 𝑥 = +∞
∧ ¬ 𝑥 = -∞))
→ 𝑥 ∈
ℝ) |
18 | | ioran 981 |
. . . . . . . . . . . . . 14
⊢ (¬
(𝑦 = +∞ ∨ 𝑦 = -∞) ↔ (¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞)) |
19 | | elxr 12852 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ℝ*
↔ (𝑦 ∈ ℝ
∨ 𝑦 = +∞ ∨
𝑦 =
-∞)) |
20 | | 3orass 1089 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞) ↔ (𝑦 ∈ ℝ ∨ (𝑦 = +∞ ∨ 𝑦 = -∞))) |
21 | 19, 20 | sylbb 218 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ℝ*
→ (𝑦 ∈ ℝ
∨ (𝑦 = +∞ ∨
𝑦 =
-∞))) |
22 | 21 | ord 861 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℝ*
→ (¬ 𝑦 ∈
ℝ → (𝑦 =
+∞ ∨ 𝑦 =
-∞))) |
23 | 22 | con1d 145 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℝ*
→ (¬ (𝑦 = +∞
∨ 𝑦 = -∞) →
𝑦 ∈
ℝ)) |
24 | 23 | imp 407 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℝ*
∧ ¬ (𝑦 = +∞
∨ 𝑦 = -∞)) →
𝑦 ∈
ℝ) |
25 | 18, 24 | sylan2br 595 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℝ*
∧ (¬ 𝑦 = +∞
∧ ¬ 𝑦 = -∞))
→ 𝑦 ∈
ℝ) |
26 | | readdcl 10954 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) |
27 | 17, 25, 26 | syl2an 596 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ*
∧ (¬ 𝑥 = +∞
∧ ¬ 𝑥 = -∞))
∧ (𝑦 ∈
ℝ* ∧ (¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞))) → (𝑥 + 𝑦) ∈ ℝ) |
28 | 27 | rexrd 11025 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℝ*
∧ (¬ 𝑥 = +∞
∧ ¬ 𝑥 = -∞))
∧ (𝑦 ∈
ℝ* ∧ (¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞))) → (𝑥 + 𝑦) ∈
ℝ*) |
29 | 28 | anassrs 468 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ ℝ*
∧ (¬ 𝑥 = +∞
∧ ¬ 𝑥 = -∞))
∧ 𝑦 ∈
ℝ*) ∧ (¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞)) → (𝑥 + 𝑦) ∈
ℝ*) |
30 | 29 | anassrs 468 |
. . . . . . . . 9
⊢
(((((𝑥 ∈
ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ 𝑦 ∈ ℝ*) ∧ ¬
𝑦 = +∞) ∧ ¬
𝑦 = -∞) → (𝑥 + 𝑦) ∈
ℝ*) |
31 | 9, 30 | ifclda 4494 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ℝ*
∧ (¬ 𝑥 = +∞
∧ ¬ 𝑥 = -∞))
∧ 𝑦 ∈
ℝ*) ∧ ¬ 𝑦 = +∞) → if(𝑦 = -∞, -∞, (𝑥 + 𝑦)) ∈
ℝ*) |
32 | 8, 31 | ifclda 4494 |
. . . . . . 7
⊢ (((𝑥 ∈ ℝ*
∧ (¬ 𝑥 = +∞
∧ ¬ 𝑥 = -∞))
∧ 𝑦 ∈
ℝ*) → if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))) ∈
ℝ*) |
33 | 32 | an32s 649 |
. . . . . 6
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) → if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))) ∈
ℝ*) |
34 | 33 | anassrs 468 |
. . . . 5
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) → if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))) ∈
ℝ*) |
35 | 7, 34 | ifclda 4494 |
. . . 4
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ ¬ 𝑥 = +∞) → if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦)))) ∈
ℝ*) |
36 | 4, 35 | ifclda 4494 |
. . 3
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞),
if(𝑦 = +∞, +∞,
if(𝑦 = -∞, -∞,
(𝑥 + 𝑦))))) ∈
ℝ*) |
37 | 36 | rgen2 3120 |
. 2
⊢
∀𝑥 ∈
ℝ* ∀𝑦 ∈ ℝ* if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞),
if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞),
if(𝑦 = +∞, +∞,
if(𝑦 = -∞, -∞,
(𝑥 + 𝑦))))) ∈
ℝ* |
38 | | df-xadd 12849 |
. . 3
⊢
+𝑒 = (𝑥
∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞),
if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞),
if(𝑦 = +∞, +∞,
if(𝑦 = -∞, -∞,
(𝑥 + 𝑦)))))) |
39 | 38 | fmpo 7908 |
. 2
⊢
(∀𝑥 ∈
ℝ* ∀𝑦 ∈ ℝ* if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞),
if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞),
if(𝑦 = +∞, +∞,
if(𝑦 = -∞, -∞,
(𝑥 + 𝑦))))) ∈ ℝ* ↔
+𝑒 :(ℝ* ×
ℝ*)⟶ℝ*) |
40 | 37, 39 | mpbi 229 |
1
⊢
+𝑒 :(ℝ* ×
ℝ*)⟶ℝ* |