MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddf Structured version   Visualization version   GIF version

Theorem xaddf 13286
Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
xaddf +𝑒 :(ℝ* × ℝ*)⟶ℝ*

Proof of Theorem xaddf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 11337 . . . . . 6 0 ∈ ℝ*
2 pnfxr 11344 . . . . . 6 +∞ ∈ ℝ*
31, 2ifcli 4595 . . . . 5 if(𝑦 = -∞, 0, +∞) ∈ ℝ*
43a1i 11 . . . 4 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥 = +∞) → if(𝑦 = -∞, 0, +∞) ∈ ℝ*)
5 mnfxr 11347 . . . . . . 7 -∞ ∈ ℝ*
61, 5ifcli 4595 . . . . . 6 if(𝑦 = +∞, 0, -∞) ∈ ℝ*
76a1i 11 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ 𝑥 = -∞) → if(𝑦 = +∞, 0, -∞) ∈ ℝ*)
82a1i 11 . . . . . . . 8 ((((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ 𝑦 ∈ ℝ*) ∧ 𝑦 = +∞) → +∞ ∈ ℝ*)
95a1i 11 . . . . . . . . 9 (((((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ 𝑦 ∈ ℝ*) ∧ ¬ 𝑦 = +∞) ∧ 𝑦 = -∞) → -∞ ∈ ℝ*)
10 ioran 984 . . . . . . . . . . . . . 14 (¬ (𝑥 = +∞ ∨ 𝑥 = -∞) ↔ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞))
11 elxr 13179 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ* ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞))
12 3orass 1090 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞) ↔ (𝑥 ∈ ℝ ∨ (𝑥 = +∞ ∨ 𝑥 = -∞)))
1311, 12sylbb 219 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ* → (𝑥 ∈ ℝ ∨ (𝑥 = +∞ ∨ 𝑥 = -∞)))
1413ord 863 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ* → (¬ 𝑥 ∈ ℝ → (𝑥 = +∞ ∨ 𝑥 = -∞)))
1514con1d 145 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ* → (¬ (𝑥 = +∞ ∨ 𝑥 = -∞) → 𝑥 ∈ ℝ))
1615imp 406 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ* ∧ ¬ (𝑥 = +∞ ∨ 𝑥 = -∞)) → 𝑥 ∈ ℝ)
1710, 16sylan2br 594 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) → 𝑥 ∈ ℝ)
18 ioran 984 . . . . . . . . . . . . . 14 (¬ (𝑦 = +∞ ∨ 𝑦 = -∞) ↔ (¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞))
19 elxr 13179 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℝ* ↔ (𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞))
20 3orass 1090 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞) ↔ (𝑦 ∈ ℝ ∨ (𝑦 = +∞ ∨ 𝑦 = -∞)))
2119, 20sylbb 219 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ* → (𝑦 ∈ ℝ ∨ (𝑦 = +∞ ∨ 𝑦 = -∞)))
2221ord 863 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ* → (¬ 𝑦 ∈ ℝ → (𝑦 = +∞ ∨ 𝑦 = -∞)))
2322con1d 145 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ* → (¬ (𝑦 = +∞ ∨ 𝑦 = -∞) → 𝑦 ∈ ℝ))
2423imp 406 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ* ∧ ¬ (𝑦 = +∞ ∨ 𝑦 = -∞)) → 𝑦 ∈ ℝ)
2518, 24sylan2br 594 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ* ∧ (¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞)) → 𝑦 ∈ ℝ)
26 readdcl 11267 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
2717, 25, 26syl2an 595 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ (𝑦 ∈ ℝ* ∧ (¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞))) → (𝑥 + 𝑦) ∈ ℝ)
2827rexrd 11340 . . . . . . . . . . 11 (((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ (𝑦 ∈ ℝ* ∧ (¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞))) → (𝑥 + 𝑦) ∈ ℝ*)
2928anassrs 467 . . . . . . . . . 10 ((((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ 𝑦 ∈ ℝ*) ∧ (¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞)) → (𝑥 + 𝑦) ∈ ℝ*)
3029anassrs 467 . . . . . . . . 9 (((((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ 𝑦 ∈ ℝ*) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → (𝑥 + 𝑦) ∈ ℝ*)
319, 30ifclda 4583 . . . . . . . 8 ((((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ 𝑦 ∈ ℝ*) ∧ ¬ 𝑦 = +∞) → if(𝑦 = -∞, -∞, (𝑥 + 𝑦)) ∈ ℝ*)
328, 31ifclda 4583 . . . . . . 7 (((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ 𝑦 ∈ ℝ*) → if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))) ∈ ℝ*)
3332an32s 651 . . . . . 6 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) → if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))) ∈ ℝ*)
3433anassrs 467 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) → if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))) ∈ ℝ*)
357, 34ifclda 4583 . . . 4 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) → if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦)))) ∈ ℝ*)
364, 35ifclda 4583 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))) ∈ ℝ*)
3736rgen2 3205 . 2 𝑥 ∈ ℝ*𝑦 ∈ ℝ* if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))) ∈ ℝ*
38 df-xadd 13176 . . 3 +𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))))
3938fmpo 8109 . 2 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))) ∈ ℝ* ↔ +𝑒 :(ℝ* × ℝ*)⟶ℝ*)
4037, 39mpbi 230 1 +𝑒 :(ℝ* × ℝ*)⟶ℝ*
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 846  w3o 1086   = wceq 1537  wcel 2108  wral 3067  ifcif 4548   × cxp 5698  wf 6569  (class class class)co 7448  cr 11183  0cc0 11184   + caddc 11187  +∞cpnf 11321  -∞cmnf 11322  *cxr 11323   +𝑒 cxad 13173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-1cn 11242  ax-addrcl 11245  ax-rnegex 11255  ax-cnre 11257
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-pnf 11326  df-mnf 11327  df-xr 11328  df-xadd 13176
This theorem is referenced by:  xaddcl  13301  xrsadd  21420  xrofsup  32774  xrge0pluscn  33886  xrge0tmdALT  33892
  Copyright terms: Public domain W3C validator