![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > arwcd | Structured version Visualization version GIF version |
Description: The codomain of an arrow is an object. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
arwrcl.a | β’ π΄ = (ArrowβπΆ) |
arwdm.b | β’ π΅ = (BaseβπΆ) |
Ref | Expression |
---|---|
arwcd | β’ (πΉ β π΄ β (codaβπΉ) β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | arwrcl.a | . . . 4 β’ π΄ = (ArrowβπΆ) | |
2 | eqid 2730 | . . . 4 β’ (HomaβπΆ) = (HomaβπΆ) | |
3 | 1, 2 | arwhoma 18001 | . . 3 β’ (πΉ β π΄ β πΉ β ((domaβπΉ)(HomaβπΆ)(codaβπΉ))) |
4 | arwdm.b | . . . 4 β’ π΅ = (BaseβπΆ) | |
5 | 2, 4 | homarcl2 17991 | . . 3 β’ (πΉ β ((domaβπΉ)(HomaβπΆ)(codaβπΉ)) β ((domaβπΉ) β π΅ β§ (codaβπΉ) β π΅)) |
6 | 3, 5 | syl 17 | . 2 β’ (πΉ β π΄ β ((domaβπΉ) β π΅ β§ (codaβπΉ) β π΅)) |
7 | 6 | simprd 494 | 1 β’ (πΉ β π΄ β (codaβπΉ) β π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 βcfv 6544 (class class class)co 7413 Basecbs 17150 domacdoma 17976 codaccoda 17977 Arrowcarw 17978 Homachoma 17979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7416 df-1st 7979 df-2nd 7980 df-doma 17980 df-coda 17981 df-homa 17982 df-arw 17983 |
This theorem is referenced by: cdaf 18006 |
Copyright terms: Public domain | W3C validator |