MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwcd Structured version   Visualization version   GIF version

Theorem arwcd 18093
Description: The codomain of an arrow is an object. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwrcl.a 𝐴 = (Arrow‘𝐶)
arwdm.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
arwcd (𝐹𝐴 → (coda𝐹) ∈ 𝐵)

Proof of Theorem arwcd
StepHypRef Expression
1 arwrcl.a . . . 4 𝐴 = (Arrow‘𝐶)
2 eqid 2737 . . . 4 (Homa𝐶) = (Homa𝐶)
31, 2arwhoma 18090 . . 3 (𝐹𝐴𝐹 ∈ ((doma𝐹)(Homa𝐶)(coda𝐹)))
4 arwdm.b . . . 4 𝐵 = (Base‘𝐶)
52, 4homarcl2 18080 . . 3 (𝐹 ∈ ((doma𝐹)(Homa𝐶)(coda𝐹)) → ((doma𝐹) ∈ 𝐵 ∧ (coda𝐹) ∈ 𝐵))
63, 5syl 17 . 2 (𝐹𝐴 → ((doma𝐹) ∈ 𝐵 ∧ (coda𝐹) ∈ 𝐵))
76simprd 495 1 (𝐹𝐴 → (coda𝐹) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  Basecbs 17247  domacdoma 18065  codaccoda 18066  Arrowcarw 18067  Homachoma 18068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-1st 8014  df-2nd 8015  df-doma 18069  df-coda 18070  df-homa 18071  df-arw 18072
This theorem is referenced by:  cdaf  18095
  Copyright terms: Public domain W3C validator