![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmaf | Structured version Visualization version GIF version |
Description: The domain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
arwrcl.a | ⊢ 𝐴 = (Arrow‘𝐶) |
arwdm.b | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
dmaf | ⊢ (doma ↾ 𝐴):𝐴⟶𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo1st 7421 | . . . . . 6 ⊢ 1st :V–onto→V | |
2 | fofn 6333 | . . . . . 6 ⊢ (1st :V–onto→V → 1st Fn V) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 1st Fn V |
4 | fof 6331 | . . . . . 6 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
5 | 1, 4 | ax-mp 5 | . . . . 5 ⊢ 1st :V⟶V |
6 | fnfco 6284 | . . . . 5 ⊢ ((1st Fn V ∧ 1st :V⟶V) → (1st ∘ 1st ) Fn V) | |
7 | 3, 5, 6 | mp2an 684 | . . . 4 ⊢ (1st ∘ 1st ) Fn V |
8 | df-doma 16988 | . . . . 5 ⊢ doma = (1st ∘ 1st ) | |
9 | 8 | fneq1i 6196 | . . . 4 ⊢ (doma Fn V ↔ (1st ∘ 1st ) Fn V) |
10 | 7, 9 | mpbir 223 | . . 3 ⊢ doma Fn V |
11 | ssv 3821 | . . 3 ⊢ 𝐴 ⊆ V | |
12 | fnssres 6215 | . . 3 ⊢ ((doma Fn V ∧ 𝐴 ⊆ V) → (doma ↾ 𝐴) Fn 𝐴) | |
13 | 10, 11, 12 | mp2an 684 | . 2 ⊢ (doma ↾ 𝐴) Fn 𝐴 |
14 | fvres 6430 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((doma ↾ 𝐴)‘𝑥) = (doma‘𝑥)) | |
15 | arwrcl.a | . . . . 5 ⊢ 𝐴 = (Arrow‘𝐶) | |
16 | arwdm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
17 | 15, 16 | arwdm 17011 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (doma‘𝑥) ∈ 𝐵) |
18 | 14, 17 | eqeltrd 2878 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ((doma ↾ 𝐴)‘𝑥) ∈ 𝐵) |
19 | 18 | rgen 3103 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ((doma ↾ 𝐴)‘𝑥) ∈ 𝐵 |
20 | ffnfv 6614 | . 2 ⊢ ((doma ↾ 𝐴):𝐴⟶𝐵 ↔ ((doma ↾ 𝐴) Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 ((doma ↾ 𝐴)‘𝑥) ∈ 𝐵)) | |
21 | 13, 19, 20 | mpbir2an 703 | 1 ⊢ (doma ↾ 𝐴):𝐴⟶𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∈ wcel 2157 ∀wral 3089 Vcvv 3385 ⊆ wss 3769 ↾ cres 5314 ∘ ccom 5316 Fn wfn 6096 ⟶wf 6097 –onto→wfo 6099 ‘cfv 6101 1st c1st 7399 Basecbs 16184 domacdoma 16984 Arrowcarw 16986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-1st 7401 df-2nd 7402 df-doma 16988 df-coda 16989 df-homa 16990 df-arw 16991 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |