| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmaf | Structured version Visualization version GIF version | ||
| Description: The domain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| arwrcl.a | ⊢ 𝐴 = (Arrow‘𝐶) |
| arwdm.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| dmaf | ⊢ (doma ↾ 𝐴):𝐴⟶𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fo1st 7941 | . . . . . 6 ⊢ 1st :V–onto→V | |
| 2 | fofn 6737 | . . . . . 6 ⊢ (1st :V–onto→V → 1st Fn V) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 1st Fn V |
| 4 | fof 6735 | . . . . . 6 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
| 5 | 1, 4 | ax-mp 5 | . . . . 5 ⊢ 1st :V⟶V |
| 6 | fnfco 6688 | . . . . 5 ⊢ ((1st Fn V ∧ 1st :V⟶V) → (1st ∘ 1st ) Fn V) | |
| 7 | 3, 5, 6 | mp2an 692 | . . . 4 ⊢ (1st ∘ 1st ) Fn V |
| 8 | df-doma 17931 | . . . . 5 ⊢ doma = (1st ∘ 1st ) | |
| 9 | 8 | fneq1i 6578 | . . . 4 ⊢ (doma Fn V ↔ (1st ∘ 1st ) Fn V) |
| 10 | 7, 9 | mpbir 231 | . . 3 ⊢ doma Fn V |
| 11 | ssv 3959 | . . 3 ⊢ 𝐴 ⊆ V | |
| 12 | fnssres 6604 | . . 3 ⊢ ((doma Fn V ∧ 𝐴 ⊆ V) → (doma ↾ 𝐴) Fn 𝐴) | |
| 13 | 10, 11, 12 | mp2an 692 | . 2 ⊢ (doma ↾ 𝐴) Fn 𝐴 |
| 14 | fvres 6841 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((doma ↾ 𝐴)‘𝑥) = (doma‘𝑥)) | |
| 15 | arwrcl.a | . . . . 5 ⊢ 𝐴 = (Arrow‘𝐶) | |
| 16 | arwdm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 17 | 15, 16 | arwdm 17954 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (doma‘𝑥) ∈ 𝐵) |
| 18 | 14, 17 | eqeltrd 2831 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ((doma ↾ 𝐴)‘𝑥) ∈ 𝐵) |
| 19 | 18 | rgen 3049 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ((doma ↾ 𝐴)‘𝑥) ∈ 𝐵 |
| 20 | ffnfv 7052 | . 2 ⊢ ((doma ↾ 𝐴):𝐴⟶𝐵 ↔ ((doma ↾ 𝐴) Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 ((doma ↾ 𝐴)‘𝑥) ∈ 𝐵)) | |
| 21 | 13, 19, 20 | mpbir2an 711 | 1 ⊢ (doma ↾ 𝐴):𝐴⟶𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3902 ↾ cres 5618 ∘ ccom 5620 Fn wfn 6476 ⟶wf 6477 –onto→wfo 6479 ‘cfv 6481 1st c1st 7919 Basecbs 17120 domacdoma 17927 Arrowcarw 17929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-1st 7921 df-2nd 7922 df-doma 17931 df-coda 17932 df-homa 17933 df-arw 17934 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |