MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmaf Structured version   Visualization version   GIF version

Theorem dmaf 17956
Description: The domain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwrcl.a 𝐴 = (Arrow‘𝐶)
arwdm.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
dmaf (doma𝐴):𝐴𝐵

Proof of Theorem dmaf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fo1st 7941 . . . . . 6 1st :V–onto→V
2 fofn 6737 . . . . . 6 (1st :V–onto→V → 1st Fn V)
31, 2ax-mp 5 . . . . 5 1st Fn V
4 fof 6735 . . . . . 6 (1st :V–onto→V → 1st :V⟶V)
51, 4ax-mp 5 . . . . 5 1st :V⟶V
6 fnfco 6688 . . . . 5 ((1st Fn V ∧ 1st :V⟶V) → (1st ∘ 1st ) Fn V)
73, 5, 6mp2an 692 . . . 4 (1st ∘ 1st ) Fn V
8 df-doma 17931 . . . . 5 doma = (1st ∘ 1st )
98fneq1i 6578 . . . 4 (doma Fn V ↔ (1st ∘ 1st ) Fn V)
107, 9mpbir 231 . . 3 doma Fn V
11 ssv 3959 . . 3 𝐴 ⊆ V
12 fnssres 6604 . . 3 ((doma Fn V ∧ 𝐴 ⊆ V) → (doma𝐴) Fn 𝐴)
1310, 11, 12mp2an 692 . 2 (doma𝐴) Fn 𝐴
14 fvres 6841 . . . 4 (𝑥𝐴 → ((doma𝐴)‘𝑥) = (doma𝑥))
15 arwrcl.a . . . . 5 𝐴 = (Arrow‘𝐶)
16 arwdm.b . . . . 5 𝐵 = (Base‘𝐶)
1715, 16arwdm 17954 . . . 4 (𝑥𝐴 → (doma𝑥) ∈ 𝐵)
1814, 17eqeltrd 2831 . . 3 (𝑥𝐴 → ((doma𝐴)‘𝑥) ∈ 𝐵)
1918rgen 3049 . 2 𝑥𝐴 ((doma𝐴)‘𝑥) ∈ 𝐵
20 ffnfv 7052 . 2 ((doma𝐴):𝐴𝐵 ↔ ((doma𝐴) Fn 𝐴 ∧ ∀𝑥𝐴 ((doma𝐴)‘𝑥) ∈ 𝐵))
2113, 19, 20mpbir2an 711 1 (doma𝐴):𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  wss 3902  cres 5618  ccom 5620   Fn wfn 6476  wf 6477  ontowfo 6479  cfv 6481  1st c1st 7919  Basecbs 17120  domacdoma 17927  Arrowcarw 17929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-1st 7921  df-2nd 7922  df-doma 17931  df-coda 17932  df-homa 17933  df-arw 17934
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator