MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmaf Structured version   Visualization version   GIF version

Theorem dmaf 17960
Description: The domain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwrcl.a 𝐴 = (Arrow‘𝐶)
arwdm.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
dmaf (doma𝐴):𝐴𝐵

Proof of Theorem dmaf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fo1st 7949 . . . . . 6 1st :V–onto→V
2 fofn 6744 . . . . . 6 (1st :V–onto→V → 1st Fn V)
31, 2ax-mp 5 . . . . 5 1st Fn V
4 fof 6742 . . . . . 6 (1st :V–onto→V → 1st :V⟶V)
51, 4ax-mp 5 . . . . 5 1st :V⟶V
6 fnfco 6695 . . . . 5 ((1st Fn V ∧ 1st :V⟶V) → (1st ∘ 1st ) Fn V)
73, 5, 6mp2an 692 . . . 4 (1st ∘ 1st ) Fn V
8 df-doma 17935 . . . . 5 doma = (1st ∘ 1st )
98fneq1i 6585 . . . 4 (doma Fn V ↔ (1st ∘ 1st ) Fn V)
107, 9mpbir 231 . . 3 doma Fn V
11 ssv 3955 . . 3 𝐴 ⊆ V
12 fnssres 6611 . . 3 ((doma Fn V ∧ 𝐴 ⊆ V) → (doma𝐴) Fn 𝐴)
1310, 11, 12mp2an 692 . 2 (doma𝐴) Fn 𝐴
14 fvres 6849 . . . 4 (𝑥𝐴 → ((doma𝐴)‘𝑥) = (doma𝑥))
15 arwrcl.a . . . . 5 𝐴 = (Arrow‘𝐶)
16 arwdm.b . . . . 5 𝐵 = (Base‘𝐶)
1715, 16arwdm 17958 . . . 4 (𝑥𝐴 → (doma𝑥) ∈ 𝐵)
1814, 17eqeltrd 2833 . . 3 (𝑥𝐴 → ((doma𝐴)‘𝑥) ∈ 𝐵)
1918rgen 3050 . 2 𝑥𝐴 ((doma𝐴)‘𝑥) ∈ 𝐵
20 ffnfv 7060 . 2 ((doma𝐴):𝐴𝐵 ↔ ((doma𝐴) Fn 𝐴 ∧ ∀𝑥𝐴 ((doma𝐴)‘𝑥) ∈ 𝐵))
2113, 19, 20mpbir2an 711 1 (doma𝐴):𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  wss 3898  cres 5623  ccom 5625   Fn wfn 6483  wf 6484  ontowfo 6486  cfv 6488  1st c1st 7927  Basecbs 17124  domacdoma 17931  Arrowcarw 17933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-ov 7357  df-1st 7929  df-2nd 7930  df-doma 17935  df-coda 17936  df-homa 17937  df-arw 17938
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator