MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmaf Structured version   Visualization version   GIF version

Theorem dmaf 18062
Description: The domain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwrcl.a 𝐴 = (Arrow‘𝐶)
arwdm.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
dmaf (doma𝐴):𝐴𝐵

Proof of Theorem dmaf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fo1st 8008 . . . . . 6 1st :V–onto→V
2 fofn 6792 . . . . . 6 (1st :V–onto→V → 1st Fn V)
31, 2ax-mp 5 . . . . 5 1st Fn V
4 fof 6790 . . . . . 6 (1st :V–onto→V → 1st :V⟶V)
51, 4ax-mp 5 . . . . 5 1st :V⟶V
6 fnfco 6743 . . . . 5 ((1st Fn V ∧ 1st :V⟶V) → (1st ∘ 1st ) Fn V)
73, 5, 6mp2an 692 . . . 4 (1st ∘ 1st ) Fn V
8 df-doma 18037 . . . . 5 doma = (1st ∘ 1st )
98fneq1i 6635 . . . 4 (doma Fn V ↔ (1st ∘ 1st ) Fn V)
107, 9mpbir 231 . . 3 doma Fn V
11 ssv 3983 . . 3 𝐴 ⊆ V
12 fnssres 6661 . . 3 ((doma Fn V ∧ 𝐴 ⊆ V) → (doma𝐴) Fn 𝐴)
1310, 11, 12mp2an 692 . 2 (doma𝐴) Fn 𝐴
14 fvres 6895 . . . 4 (𝑥𝐴 → ((doma𝐴)‘𝑥) = (doma𝑥))
15 arwrcl.a . . . . 5 𝐴 = (Arrow‘𝐶)
16 arwdm.b . . . . 5 𝐵 = (Base‘𝐶)
1715, 16arwdm 18060 . . . 4 (𝑥𝐴 → (doma𝑥) ∈ 𝐵)
1814, 17eqeltrd 2834 . . 3 (𝑥𝐴 → ((doma𝐴)‘𝑥) ∈ 𝐵)
1918rgen 3053 . 2 𝑥𝐴 ((doma𝐴)‘𝑥) ∈ 𝐵
20 ffnfv 7109 . 2 ((doma𝐴):𝐴𝐵 ↔ ((doma𝐴) Fn 𝐴 ∧ ∀𝑥𝐴 ((doma𝐴)‘𝑥) ∈ 𝐵))
2113, 19, 20mpbir2an 711 1 (doma𝐴):𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  wss 3926  cres 5656  ccom 5658   Fn wfn 6526  wf 6527  ontowfo 6529  cfv 6531  1st c1st 7986  Basecbs 17228  domacdoma 18033  Arrowcarw 18035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-1st 7988  df-2nd 7989  df-doma 18037  df-coda 18038  df-homa 18039  df-arw 18040
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator