![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmaf | Structured version Visualization version GIF version |
Description: The domain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
arwrcl.a | ⊢ 𝐴 = (Arrow‘𝐶) |
arwdm.b | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
dmaf | ⊢ (doma ↾ 𝐴):𝐴⟶𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo1st 8050 | . . . . . 6 ⊢ 1st :V–onto→V | |
2 | fofn 6836 | . . . . . 6 ⊢ (1st :V–onto→V → 1st Fn V) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 1st Fn V |
4 | fof 6834 | . . . . . 6 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
5 | 1, 4 | ax-mp 5 | . . . . 5 ⊢ 1st :V⟶V |
6 | fnfco 6786 | . . . . 5 ⊢ ((1st Fn V ∧ 1st :V⟶V) → (1st ∘ 1st ) Fn V) | |
7 | 3, 5, 6 | mp2an 691 | . . . 4 ⊢ (1st ∘ 1st ) Fn V |
8 | df-doma 18091 | . . . . 5 ⊢ doma = (1st ∘ 1st ) | |
9 | 8 | fneq1i 6676 | . . . 4 ⊢ (doma Fn V ↔ (1st ∘ 1st ) Fn V) |
10 | 7, 9 | mpbir 231 | . . 3 ⊢ doma Fn V |
11 | ssv 4033 | . . 3 ⊢ 𝐴 ⊆ V | |
12 | fnssres 6703 | . . 3 ⊢ ((doma Fn V ∧ 𝐴 ⊆ V) → (doma ↾ 𝐴) Fn 𝐴) | |
13 | 10, 11, 12 | mp2an 691 | . 2 ⊢ (doma ↾ 𝐴) Fn 𝐴 |
14 | fvres 6939 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((doma ↾ 𝐴)‘𝑥) = (doma‘𝑥)) | |
15 | arwrcl.a | . . . . 5 ⊢ 𝐴 = (Arrow‘𝐶) | |
16 | arwdm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
17 | 15, 16 | arwdm 18114 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (doma‘𝑥) ∈ 𝐵) |
18 | 14, 17 | eqeltrd 2844 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ((doma ↾ 𝐴)‘𝑥) ∈ 𝐵) |
19 | 18 | rgen 3069 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ((doma ↾ 𝐴)‘𝑥) ∈ 𝐵 |
20 | ffnfv 7153 | . 2 ⊢ ((doma ↾ 𝐴):𝐴⟶𝐵 ↔ ((doma ↾ 𝐴) Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 ((doma ↾ 𝐴)‘𝑥) ∈ 𝐵)) | |
21 | 13, 19, 20 | mpbir2an 710 | 1 ⊢ (doma ↾ 𝐴):𝐴⟶𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 ↾ cres 5702 ∘ ccom 5704 Fn wfn 6568 ⟶wf 6569 –onto→wfo 6571 ‘cfv 6573 1st c1st 8028 Basecbs 17258 domacdoma 18087 Arrowcarw 18089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-1st 8030 df-2nd 8031 df-doma 18091 df-coda 18092 df-homa 18093 df-arw 18094 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |