![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmaf | Structured version Visualization version GIF version |
Description: The domain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
arwrcl.a | β’ π΄ = (ArrowβπΆ) |
arwdm.b | β’ π΅ = (BaseβπΆ) |
Ref | Expression |
---|---|
dmaf | β’ (doma βΎ π΄):π΄βΆπ΅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo1st 7991 | . . . . . 6 β’ 1st :VβontoβV | |
2 | fofn 6804 | . . . . . 6 β’ (1st :VβontoβV β 1st Fn V) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 β’ 1st Fn V |
4 | fof 6802 | . . . . . 6 β’ (1st :VβontoβV β 1st :VβΆV) | |
5 | 1, 4 | ax-mp 5 | . . . . 5 β’ 1st :VβΆV |
6 | fnfco 6753 | . . . . 5 β’ ((1st Fn V β§ 1st :VβΆV) β (1st β 1st ) Fn V) | |
7 | 3, 5, 6 | mp2an 690 | . . . 4 β’ (1st β 1st ) Fn V |
8 | df-doma 17970 | . . . . 5 β’ doma = (1st β 1st ) | |
9 | 8 | fneq1i 6643 | . . . 4 β’ (doma Fn V β (1st β 1st ) Fn V) |
10 | 7, 9 | mpbir 230 | . . 3 β’ doma Fn V |
11 | ssv 4005 | . . 3 β’ π΄ β V | |
12 | fnssres 6670 | . . 3 β’ ((doma Fn V β§ π΄ β V) β (doma βΎ π΄) Fn π΄) | |
13 | 10, 11, 12 | mp2an 690 | . 2 β’ (doma βΎ π΄) Fn π΄ |
14 | fvres 6907 | . . . 4 β’ (π₯ β π΄ β ((doma βΎ π΄)βπ₯) = (domaβπ₯)) | |
15 | arwrcl.a | . . . . 5 β’ π΄ = (ArrowβπΆ) | |
16 | arwdm.b | . . . . 5 β’ π΅ = (BaseβπΆ) | |
17 | 15, 16 | arwdm 17993 | . . . 4 β’ (π₯ β π΄ β (domaβπ₯) β π΅) |
18 | 14, 17 | eqeltrd 2833 | . . 3 β’ (π₯ β π΄ β ((doma βΎ π΄)βπ₯) β π΅) |
19 | 18 | rgen 3063 | . 2 β’ βπ₯ β π΄ ((doma βΎ π΄)βπ₯) β π΅ |
20 | ffnfv 7114 | . 2 β’ ((doma βΎ π΄):π΄βΆπ΅ β ((doma βΎ π΄) Fn π΄ β§ βπ₯ β π΄ ((doma βΎ π΄)βπ₯) β π΅)) | |
21 | 13, 19, 20 | mpbir2an 709 | 1 β’ (doma βΎ π΄):π΄βΆπ΅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 β wcel 2106 βwral 3061 Vcvv 3474 β wss 3947 βΎ cres 5677 β ccom 5679 Fn wfn 6535 βΆwf 6536 βontoβwfo 6538 βcfv 6540 1st c1st 7969 Basecbs 17140 domacdoma 17966 Arrowcarw 17968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-1st 7971 df-2nd 7972 df-doma 17970 df-coda 17971 df-homa 17972 df-arw 17973 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |