Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmaf | Structured version Visualization version GIF version |
Description: The domain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
arwrcl.a | ⊢ 𝐴 = (Arrow‘𝐶) |
arwdm.b | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
dmaf | ⊢ (doma ↾ 𝐴):𝐴⟶𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo1st 7851 | . . . . . 6 ⊢ 1st :V–onto→V | |
2 | fofn 6690 | . . . . . 6 ⊢ (1st :V–onto→V → 1st Fn V) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 1st Fn V |
4 | fof 6688 | . . . . . 6 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
5 | 1, 4 | ax-mp 5 | . . . . 5 ⊢ 1st :V⟶V |
6 | fnfco 6639 | . . . . 5 ⊢ ((1st Fn V ∧ 1st :V⟶V) → (1st ∘ 1st ) Fn V) | |
7 | 3, 5, 6 | mp2an 689 | . . . 4 ⊢ (1st ∘ 1st ) Fn V |
8 | df-doma 17739 | . . . . 5 ⊢ doma = (1st ∘ 1st ) | |
9 | 8 | fneq1i 6530 | . . . 4 ⊢ (doma Fn V ↔ (1st ∘ 1st ) Fn V) |
10 | 7, 9 | mpbir 230 | . . 3 ⊢ doma Fn V |
11 | ssv 3945 | . . 3 ⊢ 𝐴 ⊆ V | |
12 | fnssres 6555 | . . 3 ⊢ ((doma Fn V ∧ 𝐴 ⊆ V) → (doma ↾ 𝐴) Fn 𝐴) | |
13 | 10, 11, 12 | mp2an 689 | . 2 ⊢ (doma ↾ 𝐴) Fn 𝐴 |
14 | fvres 6793 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((doma ↾ 𝐴)‘𝑥) = (doma‘𝑥)) | |
15 | arwrcl.a | . . . . 5 ⊢ 𝐴 = (Arrow‘𝐶) | |
16 | arwdm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
17 | 15, 16 | arwdm 17762 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (doma‘𝑥) ∈ 𝐵) |
18 | 14, 17 | eqeltrd 2839 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ((doma ↾ 𝐴)‘𝑥) ∈ 𝐵) |
19 | 18 | rgen 3074 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ((doma ↾ 𝐴)‘𝑥) ∈ 𝐵 |
20 | ffnfv 6992 | . 2 ⊢ ((doma ↾ 𝐴):𝐴⟶𝐵 ↔ ((doma ↾ 𝐴) Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 ((doma ↾ 𝐴)‘𝑥) ∈ 𝐵)) | |
21 | 13, 19, 20 | mpbir2an 708 | 1 ⊢ (doma ↾ 𝐴):𝐴⟶𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ⊆ wss 3887 ↾ cres 5591 ∘ ccom 5593 Fn wfn 6428 ⟶wf 6429 –onto→wfo 6431 ‘cfv 6433 1st c1st 7829 Basecbs 16912 domacdoma 17735 Arrowcarw 17737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-1st 7831 df-2nd 7832 df-doma 17739 df-coda 17740 df-homa 17741 df-arw 17742 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |