MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmaf Structured version   Visualization version   GIF version

Theorem dmaf 17995
Description: The domain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwrcl.a 𝐴 = (Arrowβ€˜πΆ)
arwdm.b 𝐡 = (Baseβ€˜πΆ)
Assertion
Ref Expression
dmaf (doma β†Ύ 𝐴):𝐴⟢𝐡

Proof of Theorem dmaf
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 fo1st 7991 . . . . . 6 1st :V–ontoβ†’V
2 fofn 6804 . . . . . 6 (1st :V–ontoβ†’V β†’ 1st Fn V)
31, 2ax-mp 5 . . . . 5 1st Fn V
4 fof 6802 . . . . . 6 (1st :V–ontoβ†’V β†’ 1st :V⟢V)
51, 4ax-mp 5 . . . . 5 1st :V⟢V
6 fnfco 6753 . . . . 5 ((1st Fn V ∧ 1st :V⟢V) β†’ (1st ∘ 1st ) Fn V)
73, 5, 6mp2an 690 . . . 4 (1st ∘ 1st ) Fn V
8 df-doma 17970 . . . . 5 doma = (1st ∘ 1st )
98fneq1i 6643 . . . 4 (doma Fn V ↔ (1st ∘ 1st ) Fn V)
107, 9mpbir 230 . . 3 doma Fn V
11 ssv 4005 . . 3 𝐴 βŠ† V
12 fnssres 6670 . . 3 ((doma Fn V ∧ 𝐴 βŠ† V) β†’ (doma β†Ύ 𝐴) Fn 𝐴)
1310, 11, 12mp2an 690 . 2 (doma β†Ύ 𝐴) Fn 𝐴
14 fvres 6907 . . . 4 (π‘₯ ∈ 𝐴 β†’ ((doma β†Ύ 𝐴)β€˜π‘₯) = (domaβ€˜π‘₯))
15 arwrcl.a . . . . 5 𝐴 = (Arrowβ€˜πΆ)
16 arwdm.b . . . . 5 𝐡 = (Baseβ€˜πΆ)
1715, 16arwdm 17993 . . . 4 (π‘₯ ∈ 𝐴 β†’ (domaβ€˜π‘₯) ∈ 𝐡)
1814, 17eqeltrd 2833 . . 3 (π‘₯ ∈ 𝐴 β†’ ((doma β†Ύ 𝐴)β€˜π‘₯) ∈ 𝐡)
1918rgen 3063 . 2 βˆ€π‘₯ ∈ 𝐴 ((doma β†Ύ 𝐴)β€˜π‘₯) ∈ 𝐡
20 ffnfv 7114 . 2 ((doma β†Ύ 𝐴):𝐴⟢𝐡 ↔ ((doma β†Ύ 𝐴) Fn 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 ((doma β†Ύ 𝐴)β€˜π‘₯) ∈ 𝐡))
2113, 19, 20mpbir2an 709 1 (doma β†Ύ 𝐴):𝐴⟢𝐡
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  Vcvv 3474   βŠ† wss 3947   β†Ύ cres 5677   ∘ ccom 5679   Fn wfn 6535  βŸΆwf 6536  β€“ontoβ†’wfo 6538  β€˜cfv 6540  1st c1st 7969  Basecbs 17140  domacdoma 17966  Arrowcarw 17968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-1st 7971  df-2nd 7972  df-doma 17970  df-coda 17971  df-homa 17972  df-arw 17973
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator