MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmaf Structured version   Visualization version   GIF version

Theorem dmaf 18116
Description: The domain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwrcl.a 𝐴 = (Arrow‘𝐶)
arwdm.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
dmaf (doma𝐴):𝐴𝐵

Proof of Theorem dmaf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fo1st 8050 . . . . . 6 1st :V–onto→V
2 fofn 6836 . . . . . 6 (1st :V–onto→V → 1st Fn V)
31, 2ax-mp 5 . . . . 5 1st Fn V
4 fof 6834 . . . . . 6 (1st :V–onto→V → 1st :V⟶V)
51, 4ax-mp 5 . . . . 5 1st :V⟶V
6 fnfco 6786 . . . . 5 ((1st Fn V ∧ 1st :V⟶V) → (1st ∘ 1st ) Fn V)
73, 5, 6mp2an 691 . . . 4 (1st ∘ 1st ) Fn V
8 df-doma 18091 . . . . 5 doma = (1st ∘ 1st )
98fneq1i 6676 . . . 4 (doma Fn V ↔ (1st ∘ 1st ) Fn V)
107, 9mpbir 231 . . 3 doma Fn V
11 ssv 4033 . . 3 𝐴 ⊆ V
12 fnssres 6703 . . 3 ((doma Fn V ∧ 𝐴 ⊆ V) → (doma𝐴) Fn 𝐴)
1310, 11, 12mp2an 691 . 2 (doma𝐴) Fn 𝐴
14 fvres 6939 . . . 4 (𝑥𝐴 → ((doma𝐴)‘𝑥) = (doma𝑥))
15 arwrcl.a . . . . 5 𝐴 = (Arrow‘𝐶)
16 arwdm.b . . . . 5 𝐵 = (Base‘𝐶)
1715, 16arwdm 18114 . . . 4 (𝑥𝐴 → (doma𝑥) ∈ 𝐵)
1814, 17eqeltrd 2844 . . 3 (𝑥𝐴 → ((doma𝐴)‘𝑥) ∈ 𝐵)
1918rgen 3069 . 2 𝑥𝐴 ((doma𝐴)‘𝑥) ∈ 𝐵
20 ffnfv 7153 . 2 ((doma𝐴):𝐴𝐵 ↔ ((doma𝐴) Fn 𝐴 ∧ ∀𝑥𝐴 ((doma𝐴)‘𝑥) ∈ 𝐵))
2113, 19, 20mpbir2an 710 1 (doma𝐴):𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  wss 3976  cres 5702  ccom 5704   Fn wfn 6568  wf 6569  ontowfo 6571  cfv 6573  1st c1st 8028  Basecbs 17258  domacdoma 18087  Arrowcarw 18089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-1st 8030  df-2nd 8031  df-doma 18091  df-coda 18092  df-homa 18093  df-arw 18094
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator