MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmaf Structured version   Visualization version   GIF version

Theorem dmaf 17762
Description: The domain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwrcl.a 𝐴 = (Arrow‘𝐶)
arwdm.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
dmaf (doma𝐴):𝐴𝐵

Proof of Theorem dmaf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fo1st 7844 . . . . . 6 1st :V–onto→V
2 fofn 6688 . . . . . 6 (1st :V–onto→V → 1st Fn V)
31, 2ax-mp 5 . . . . 5 1st Fn V
4 fof 6686 . . . . . 6 (1st :V–onto→V → 1st :V⟶V)
51, 4ax-mp 5 . . . . 5 1st :V⟶V
6 fnfco 6637 . . . . 5 ((1st Fn V ∧ 1st :V⟶V) → (1st ∘ 1st ) Fn V)
73, 5, 6mp2an 689 . . . 4 (1st ∘ 1st ) Fn V
8 df-doma 17737 . . . . 5 doma = (1st ∘ 1st )
98fneq1i 6528 . . . 4 (doma Fn V ↔ (1st ∘ 1st ) Fn V)
107, 9mpbir 230 . . 3 doma Fn V
11 ssv 3950 . . 3 𝐴 ⊆ V
12 fnssres 6553 . . 3 ((doma Fn V ∧ 𝐴 ⊆ V) → (doma𝐴) Fn 𝐴)
1310, 11, 12mp2an 689 . 2 (doma𝐴) Fn 𝐴
14 fvres 6790 . . . 4 (𝑥𝐴 → ((doma𝐴)‘𝑥) = (doma𝑥))
15 arwrcl.a . . . . 5 𝐴 = (Arrow‘𝐶)
16 arwdm.b . . . . 5 𝐵 = (Base‘𝐶)
1715, 16arwdm 17760 . . . 4 (𝑥𝐴 → (doma𝑥) ∈ 𝐵)
1814, 17eqeltrd 2841 . . 3 (𝑥𝐴 → ((doma𝐴)‘𝑥) ∈ 𝐵)
1918rgen 3076 . 2 𝑥𝐴 ((doma𝐴)‘𝑥) ∈ 𝐵
20 ffnfv 6989 . 2 ((doma𝐴):𝐴𝐵 ↔ ((doma𝐴) Fn 𝐴 ∧ ∀𝑥𝐴 ((doma𝐴)‘𝑥) ∈ 𝐵))
2113, 19, 20mpbir2an 708 1 (doma𝐴):𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2110  wral 3066  Vcvv 3431  wss 3892  cres 5592  ccom 5594   Fn wfn 6427  wf 6428  ontowfo 6430  cfv 6432  1st c1st 7822  Basecbs 16910  domacdoma 17733  Arrowcarw 17735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-ov 7274  df-1st 7824  df-2nd 7825  df-doma 17737  df-coda 17738  df-homa 17739  df-arw 17740
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator