MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elblps Structured version   Visualization version   GIF version

Theorem elblps 24113
Description: Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
elblps ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) β†’ (𝐴 ∈ (𝑃(ballβ€˜π·)𝑅) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅)))

Proof of Theorem elblps
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 blvalps 24111 . . 3 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) β†’ (𝑃(ballβ€˜π·)𝑅) = {π‘₯ ∈ 𝑋 ∣ (𝑃𝐷π‘₯) < 𝑅})
21eleq2d 2817 . 2 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) β†’ (𝐴 ∈ (𝑃(ballβ€˜π·)𝑅) ↔ 𝐴 ∈ {π‘₯ ∈ 𝑋 ∣ (𝑃𝐷π‘₯) < 𝑅}))
3 oveq2 7419 . . . 4 (π‘₯ = 𝐴 β†’ (𝑃𝐷π‘₯) = (𝑃𝐷𝐴))
43breq1d 5157 . . 3 (π‘₯ = 𝐴 β†’ ((𝑃𝐷π‘₯) < 𝑅 ↔ (𝑃𝐷𝐴) < 𝑅))
54elrab 3682 . 2 (𝐴 ∈ {π‘₯ ∈ 𝑋 ∣ (𝑃𝐷π‘₯) < 𝑅} ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅))
62, 5bitrdi 286 1 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) β†’ (𝐴 ∈ (𝑃(ballβ€˜π·)𝑅) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  {crab 3430   class class class wbr 5147  β€˜cfv 6542  (class class class)co 7411  β„*cxr 11251   < clt 11252  PsMetcpsmet 21128  ballcbl 21131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-map 8824  df-xr 11256  df-psmet 21136  df-bl 21139
This theorem is referenced by:  elbl2ps  24115  xblpnfps  24121  xblss2ps  24127  xblcntrps  24136  blssps  24150  ballss3  44083
  Copyright terms: Public domain W3C validator