| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nodmon | Structured version Visualization version GIF version | ||
| Description: The domain of a surreal is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| nodmon | ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elno 27590 | . 2 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | |
| 2 | fdm 6666 | . . . . 5 ⊢ (𝐴:𝑥⟶{1o, 2o} → dom 𝐴 = 𝑥) | |
| 3 | 2 | eleq1d 2816 | . . . 4 ⊢ (𝐴:𝑥⟶{1o, 2o} → (dom 𝐴 ∈ On ↔ 𝑥 ∈ On)) |
| 4 | 3 | biimprcd 250 | . . 3 ⊢ (𝑥 ∈ On → (𝐴:𝑥⟶{1o, 2o} → dom 𝐴 ∈ On)) |
| 5 | 4 | rexlimiv 3126 | . 2 ⊢ (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → dom 𝐴 ∈ On) |
| 6 | 1, 5 | sylbi 217 | 1 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∃wrex 3056 {cpr 4577 dom cdm 5619 Oncon0 6312 ⟶wf 6483 1oc1o 8384 2oc2o 8385 No csur 27584 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-fun 6489 df-fn 6490 df-f 6491 df-no 27587 |
| This theorem is referenced by: nodmord 27598 elno2 27599 noseponlem 27609 noextend 27611 noextendseq 27612 noextenddif 27613 noextendlt 27614 noextendgt 27615 bdayfo 27622 nosepssdm 27631 nolt02olem 27639 nosupno 27648 nosupres 27652 nosupbnd1lem1 27653 nosupbnd1lem2 27654 nosupbnd1lem3 27655 nosupbnd1lem4 27656 nosupbnd1lem5 27657 nosupbnd1lem6 27658 nosupbnd1 27659 nosupbnd2lem1 27660 nosupbnd2 27661 noinfno 27663 noinfres 27667 noinfbnd1lem1 27668 noinfbnd1lem2 27669 noinfbnd1lem3 27670 noinfbnd1lem4 27671 noinfbnd1lem5 27672 noinfbnd1lem6 27673 noinfbnd1 27674 noinfbnd2lem1 27675 noinfbnd2 27676 nosupinfsep 27677 noetasuplem3 27680 noetasuplem4 27681 noetainflem3 27684 noetainflem4 27685 bdaybndex 43529 |
| Copyright terms: Public domain | W3C validator |