| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nodmon | Structured version Visualization version GIF version | ||
| Description: The domain of a surreal is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| nodmon | ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elno 27573 | . 2 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | |
| 2 | fdm 6665 | . . . . 5 ⊢ (𝐴:𝑥⟶{1o, 2o} → dom 𝐴 = 𝑥) | |
| 3 | 2 | eleq1d 2813 | . . . 4 ⊢ (𝐴:𝑥⟶{1o, 2o} → (dom 𝐴 ∈ On ↔ 𝑥 ∈ On)) |
| 4 | 3 | biimprcd 250 | . . 3 ⊢ (𝑥 ∈ On → (𝐴:𝑥⟶{1o, 2o} → dom 𝐴 ∈ On)) |
| 5 | 4 | rexlimiv 3123 | . 2 ⊢ (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → dom 𝐴 ∈ On) |
| 6 | 1, 5 | sylbi 217 | 1 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3053 {cpr 4581 dom cdm 5623 Oncon0 6311 ⟶wf 6482 1oc1o 8388 2oc2o 8389 No csur 27567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-fun 6488 df-fn 6489 df-f 6490 df-no 27570 |
| This theorem is referenced by: nodmord 27581 elno2 27582 noseponlem 27592 noextend 27594 noextendseq 27595 noextenddif 27596 noextendlt 27597 noextendgt 27598 bdayfo 27605 nosepssdm 27614 nolt02olem 27622 nosupno 27631 nosupres 27635 nosupbnd1lem1 27636 nosupbnd1lem2 27637 nosupbnd1lem3 27638 nosupbnd1lem4 27639 nosupbnd1lem5 27640 nosupbnd1lem6 27641 nosupbnd1 27642 nosupbnd2lem1 27643 nosupbnd2 27644 noinfno 27646 noinfres 27650 noinfbnd1lem1 27651 noinfbnd1lem2 27652 noinfbnd1lem3 27653 noinfbnd1lem4 27654 noinfbnd1lem5 27655 noinfbnd1lem6 27656 noinfbnd1 27657 noinfbnd2lem1 27658 noinfbnd2 27659 nosupinfsep 27660 noetasuplem3 27663 noetasuplem4 27664 noetainflem3 27667 noetainflem4 27668 bdaybndex 43404 |
| Copyright terms: Public domain | W3C validator |