| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nodmon | Structured version Visualization version GIF version | ||
| Description: The domain of a surreal is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| nodmon | ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elno 27609 | . 2 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | |
| 2 | fdm 6715 | . . . . 5 ⊢ (𝐴:𝑥⟶{1o, 2o} → dom 𝐴 = 𝑥) | |
| 3 | 2 | eleq1d 2819 | . . . 4 ⊢ (𝐴:𝑥⟶{1o, 2o} → (dom 𝐴 ∈ On ↔ 𝑥 ∈ On)) |
| 4 | 3 | biimprcd 250 | . . 3 ⊢ (𝑥 ∈ On → (𝐴:𝑥⟶{1o, 2o} → dom 𝐴 ∈ On)) |
| 5 | 4 | rexlimiv 3134 | . 2 ⊢ (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → dom 𝐴 ∈ On) |
| 6 | 1, 5 | sylbi 217 | 1 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∃wrex 3060 {cpr 4603 dom cdm 5654 Oncon0 6352 ⟶wf 6527 1oc1o 8473 2oc2o 8474 No csur 27603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-fun 6533 df-fn 6534 df-f 6535 df-no 27606 |
| This theorem is referenced by: nodmord 27617 elno2 27618 noseponlem 27628 noextend 27630 noextendseq 27631 noextenddif 27632 noextendlt 27633 noextendgt 27634 bdayfo 27641 nosepssdm 27650 nolt02olem 27658 nosupno 27667 nosupres 27671 nosupbnd1lem1 27672 nosupbnd1lem2 27673 nosupbnd1lem3 27674 nosupbnd1lem4 27675 nosupbnd1lem5 27676 nosupbnd1lem6 27677 nosupbnd1 27678 nosupbnd2lem1 27679 nosupbnd2 27680 noinfno 27682 noinfres 27686 noinfbnd1lem1 27687 noinfbnd1lem2 27688 noinfbnd1lem3 27689 noinfbnd1lem4 27690 noinfbnd1lem5 27691 noinfbnd1lem6 27692 noinfbnd1 27693 noinfbnd2lem1 27694 noinfbnd2 27695 nosupinfsep 27696 noetasuplem3 27699 noetasuplem4 27700 noetainflem3 27703 noetainflem4 27704 bdaybndex 43455 |
| Copyright terms: Public domain | W3C validator |