| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nodmon | Structured version Visualization version GIF version | ||
| Description: The domain of a surreal is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| nodmon | ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elno 27577 | . 2 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | |
| 2 | fdm 6656 | . . . . 5 ⊢ (𝐴:𝑥⟶{1o, 2o} → dom 𝐴 = 𝑥) | |
| 3 | 2 | eleq1d 2814 | . . . 4 ⊢ (𝐴:𝑥⟶{1o, 2o} → (dom 𝐴 ∈ On ↔ 𝑥 ∈ On)) |
| 4 | 3 | biimprcd 250 | . . 3 ⊢ (𝑥 ∈ On → (𝐴:𝑥⟶{1o, 2o} → dom 𝐴 ∈ On)) |
| 5 | 4 | rexlimiv 3124 | . 2 ⊢ (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → dom 𝐴 ∈ On) |
| 6 | 1, 5 | sylbi 217 | 1 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2110 ∃wrex 3054 {cpr 4576 dom cdm 5614 Oncon0 6302 ⟶wf 6473 1oc1o 8373 2oc2o 8374 No csur 27571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-fun 6479 df-fn 6480 df-f 6481 df-no 27574 |
| This theorem is referenced by: nodmord 27585 elno2 27586 noseponlem 27596 noextend 27598 noextendseq 27599 noextenddif 27600 noextendlt 27601 noextendgt 27602 bdayfo 27609 nosepssdm 27618 nolt02olem 27626 nosupno 27635 nosupres 27639 nosupbnd1lem1 27640 nosupbnd1lem2 27641 nosupbnd1lem3 27642 nosupbnd1lem4 27643 nosupbnd1lem5 27644 nosupbnd1lem6 27645 nosupbnd1 27646 nosupbnd2lem1 27647 nosupbnd2 27648 noinfno 27650 noinfres 27654 noinfbnd1lem1 27655 noinfbnd1lem2 27656 noinfbnd1lem3 27657 noinfbnd1lem4 27658 noinfbnd1lem5 27659 noinfbnd1lem6 27660 noinfbnd1 27661 noinfbnd2lem1 27662 noinfbnd2 27663 nosupinfsep 27664 noetasuplem3 27667 noetasuplem4 27668 noetainflem3 27671 noetainflem4 27672 bdaybndex 43443 |
| Copyright terms: Public domain | W3C validator |