| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nodmon | Structured version Visualization version GIF version | ||
| Description: The domain of a surreal is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| nodmon | ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elno 27557 | . 2 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | |
| 2 | fdm 6697 | . . . . 5 ⊢ (𝐴:𝑥⟶{1o, 2o} → dom 𝐴 = 𝑥) | |
| 3 | 2 | eleq1d 2813 | . . . 4 ⊢ (𝐴:𝑥⟶{1o, 2o} → (dom 𝐴 ∈ On ↔ 𝑥 ∈ On)) |
| 4 | 3 | biimprcd 250 | . . 3 ⊢ (𝑥 ∈ On → (𝐴:𝑥⟶{1o, 2o} → dom 𝐴 ∈ On)) |
| 5 | 4 | rexlimiv 3127 | . 2 ⊢ (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → dom 𝐴 ∈ On) |
| 6 | 1, 5 | sylbi 217 | 1 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3053 {cpr 4591 dom cdm 5638 Oncon0 6332 ⟶wf 6507 1oc1o 8427 2oc2o 8428 No csur 27551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 df-no 27554 |
| This theorem is referenced by: nodmord 27565 elno2 27566 noseponlem 27576 noextend 27578 noextendseq 27579 noextenddif 27580 noextendlt 27581 noextendgt 27582 bdayfo 27589 nosepssdm 27598 nolt02olem 27606 nosupno 27615 nosupres 27619 nosupbnd1lem1 27620 nosupbnd1lem2 27621 nosupbnd1lem3 27622 nosupbnd1lem4 27623 nosupbnd1lem5 27624 nosupbnd1lem6 27625 nosupbnd1 27626 nosupbnd2lem1 27627 nosupbnd2 27628 noinfno 27630 noinfres 27634 noinfbnd1lem1 27635 noinfbnd1lem2 27636 noinfbnd1lem3 27637 noinfbnd1lem4 27638 noinfbnd1lem5 27639 noinfbnd1lem6 27640 noinfbnd1 27641 noinfbnd2lem1 27642 noinfbnd2 27643 nosupinfsep 27644 noetasuplem3 27647 noetasuplem4 27648 noetainflem3 27651 noetainflem4 27652 bdaybndex 43420 |
| Copyright terms: Public domain | W3C validator |