| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nodmon | Structured version Visualization version GIF version | ||
| Description: The domain of a surreal is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| nodmon | ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elno 27563 | . 2 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | |
| 2 | fdm 6699 | . . . . 5 ⊢ (𝐴:𝑥⟶{1o, 2o} → dom 𝐴 = 𝑥) | |
| 3 | 2 | eleq1d 2814 | . . . 4 ⊢ (𝐴:𝑥⟶{1o, 2o} → (dom 𝐴 ∈ On ↔ 𝑥 ∈ On)) |
| 4 | 3 | biimprcd 250 | . . 3 ⊢ (𝑥 ∈ On → (𝐴:𝑥⟶{1o, 2o} → dom 𝐴 ∈ On)) |
| 5 | 4 | rexlimiv 3128 | . 2 ⊢ (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → dom 𝐴 ∈ On) |
| 6 | 1, 5 | sylbi 217 | 1 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3054 {cpr 4593 dom cdm 5640 Oncon0 6334 ⟶wf 6509 1oc1o 8429 2oc2o 8430 No csur 27557 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-fun 6515 df-fn 6516 df-f 6517 df-no 27560 |
| This theorem is referenced by: nodmord 27571 elno2 27572 noseponlem 27582 noextend 27584 noextendseq 27585 noextenddif 27586 noextendlt 27587 noextendgt 27588 bdayfo 27595 nosepssdm 27604 nolt02olem 27612 nosupno 27621 nosupres 27625 nosupbnd1lem1 27626 nosupbnd1lem2 27627 nosupbnd1lem3 27628 nosupbnd1lem4 27629 nosupbnd1lem5 27630 nosupbnd1lem6 27631 nosupbnd1 27632 nosupbnd2lem1 27633 nosupbnd2 27634 noinfno 27636 noinfres 27640 noinfbnd1lem1 27641 noinfbnd1lem2 27642 noinfbnd1lem3 27643 noinfbnd1lem4 27644 noinfbnd1lem5 27645 noinfbnd1lem6 27646 noinfbnd1 27647 noinfbnd2lem1 27648 noinfbnd2 27649 nosupinfsep 27650 noetasuplem3 27653 noetasuplem4 27654 noetainflem3 27657 noetainflem4 27658 bdaybndex 43413 |
| Copyright terms: Public domain | W3C validator |