![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nodmon | Structured version Visualization version GIF version |
Description: The domain of a surreal is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011.) |
Ref | Expression |
---|---|
nodmon | ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elno 27609 | . 2 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | |
2 | fdm 6730 | . . . . 5 ⊢ (𝐴:𝑥⟶{1o, 2o} → dom 𝐴 = 𝑥) | |
3 | 2 | eleq1d 2810 | . . . 4 ⊢ (𝐴:𝑥⟶{1o, 2o} → (dom 𝐴 ∈ On ↔ 𝑥 ∈ On)) |
4 | 3 | biimprcd 249 | . . 3 ⊢ (𝑥 ∈ On → (𝐴:𝑥⟶{1o, 2o} → dom 𝐴 ∈ On)) |
5 | 4 | rexlimiv 3138 | . 2 ⊢ (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → dom 𝐴 ∈ On) |
6 | 1, 5 | sylbi 216 | 1 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ∃wrex 3060 {cpr 4631 dom cdm 5677 Oncon0 6369 ⟶wf 6543 1oc1o 8478 2oc2o 8479 No csur 27603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-no 27606 |
This theorem is referenced by: nodmord 27616 elno2 27617 noseponlem 27627 noextend 27629 noextendseq 27630 noextenddif 27631 noextendlt 27632 noextendgt 27633 bdayfo 27640 nosepssdm 27649 nolt02olem 27657 nosupno 27666 nosupres 27670 nosupbnd1lem1 27671 nosupbnd1lem2 27672 nosupbnd1lem3 27673 nosupbnd1lem4 27674 nosupbnd1lem5 27675 nosupbnd1lem6 27676 nosupbnd1 27677 nosupbnd2lem1 27678 nosupbnd2 27679 noinfno 27681 noinfres 27685 noinfbnd1lem1 27686 noinfbnd1lem2 27687 noinfbnd1lem3 27688 noinfbnd1lem4 27689 noinfbnd1lem5 27690 noinfbnd1lem6 27691 noinfbnd1 27692 noinfbnd2lem1 27693 noinfbnd2 27694 nosupinfsep 27695 noetasuplem3 27698 noetasuplem4 27699 noetainflem3 27702 noetainflem4 27703 bdaybndex 42926 |
Copyright terms: Public domain | W3C validator |