![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nodmon | Structured version Visualization version GIF version |
Description: The domain of a surreal is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011.) |
Ref | Expression |
---|---|
nodmon | ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elno 27705 | . 2 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | |
2 | fdm 6746 | . . . . 5 ⊢ (𝐴:𝑥⟶{1o, 2o} → dom 𝐴 = 𝑥) | |
3 | 2 | eleq1d 2824 | . . . 4 ⊢ (𝐴:𝑥⟶{1o, 2o} → (dom 𝐴 ∈ On ↔ 𝑥 ∈ On)) |
4 | 3 | biimprcd 250 | . . 3 ⊢ (𝑥 ∈ On → (𝐴:𝑥⟶{1o, 2o} → dom 𝐴 ∈ On)) |
5 | 4 | rexlimiv 3146 | . 2 ⊢ (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → dom 𝐴 ∈ On) |
6 | 1, 5 | sylbi 217 | 1 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∃wrex 3068 {cpr 4633 dom cdm 5689 Oncon0 6386 ⟶wf 6559 1oc1o 8498 2oc2o 8499 No csur 27699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-fun 6565 df-fn 6566 df-f 6567 df-no 27702 |
This theorem is referenced by: nodmord 27713 elno2 27714 noseponlem 27724 noextend 27726 noextendseq 27727 noextenddif 27728 noextendlt 27729 noextendgt 27730 bdayfo 27737 nosepssdm 27746 nolt02olem 27754 nosupno 27763 nosupres 27767 nosupbnd1lem1 27768 nosupbnd1lem2 27769 nosupbnd1lem3 27770 nosupbnd1lem4 27771 nosupbnd1lem5 27772 nosupbnd1lem6 27773 nosupbnd1 27774 nosupbnd2lem1 27775 nosupbnd2 27776 noinfno 27778 noinfres 27782 noinfbnd1lem1 27783 noinfbnd1lem2 27784 noinfbnd1lem3 27785 noinfbnd1lem4 27786 noinfbnd1lem5 27787 noinfbnd1lem6 27788 noinfbnd1 27789 noinfbnd2lem1 27790 noinfbnd2 27791 nosupinfsep 27792 noetasuplem3 27795 noetasuplem4 27796 noetainflem3 27799 noetainflem4 27800 bdaybndex 43421 |
Copyright terms: Public domain | W3C validator |