Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nodmon | Structured version Visualization version GIF version |
Description: The domain of a surreal is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011.) |
Ref | Expression |
---|---|
nodmon | ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elno 33849 | . 2 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | |
2 | fdm 6609 | . . . . 5 ⊢ (𝐴:𝑥⟶{1o, 2o} → dom 𝐴 = 𝑥) | |
3 | 2 | eleq1d 2823 | . . . 4 ⊢ (𝐴:𝑥⟶{1o, 2o} → (dom 𝐴 ∈ On ↔ 𝑥 ∈ On)) |
4 | 3 | biimprcd 249 | . . 3 ⊢ (𝑥 ∈ On → (𝐴:𝑥⟶{1o, 2o} → dom 𝐴 ∈ On)) |
5 | 4 | rexlimiv 3209 | . 2 ⊢ (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → dom 𝐴 ∈ On) |
6 | 1, 5 | sylbi 216 | 1 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∃wrex 3065 {cpr 4563 dom cdm 5589 Oncon0 6266 ⟶wf 6429 1oc1o 8290 2oc2o 8291 No csur 33843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-no 33846 |
This theorem is referenced by: nodmord 33856 elno2 33857 noseponlem 33867 noextend 33869 noextendseq 33870 noextenddif 33871 noextendlt 33872 noextendgt 33873 bdayfo 33880 nosepssdm 33889 nolt02olem 33897 nosupno 33906 nosupres 33910 nosupbnd1lem1 33911 nosupbnd1lem2 33912 nosupbnd1lem3 33913 nosupbnd1lem4 33914 nosupbnd1lem5 33915 nosupbnd1lem6 33916 nosupbnd1 33917 nosupbnd2lem1 33918 nosupbnd2 33919 noinfno 33921 noinfres 33925 noinfbnd1lem1 33926 noinfbnd1lem2 33927 noinfbnd1lem3 33928 noinfbnd1lem4 33929 noinfbnd1lem5 33930 noinfbnd1lem6 33931 noinfbnd1 33932 noinfbnd2lem1 33933 noinfbnd2 33934 nosupinfsep 33935 noetasuplem3 33938 noetasuplem4 33939 noetainflem3 33942 noetainflem4 33943 |
Copyright terms: Public domain | W3C validator |