![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nodmon | Structured version Visualization version GIF version |
Description: The domain of a surreal is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011.) |
Ref | Expression |
---|---|
nodmon | ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elno 27708 | . 2 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | |
2 | fdm 6756 | . . . . 5 ⊢ (𝐴:𝑥⟶{1o, 2o} → dom 𝐴 = 𝑥) | |
3 | 2 | eleq1d 2829 | . . . 4 ⊢ (𝐴:𝑥⟶{1o, 2o} → (dom 𝐴 ∈ On ↔ 𝑥 ∈ On)) |
4 | 3 | biimprcd 250 | . . 3 ⊢ (𝑥 ∈ On → (𝐴:𝑥⟶{1o, 2o} → dom 𝐴 ∈ On)) |
5 | 4 | rexlimiv 3154 | . 2 ⊢ (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → dom 𝐴 ∈ On) |
6 | 1, 5 | sylbi 217 | 1 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∃wrex 3076 {cpr 4650 dom cdm 5700 Oncon0 6395 ⟶wf 6569 1oc1o 8515 2oc2o 8516 No csur 27702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-f 6577 df-no 27705 |
This theorem is referenced by: nodmord 27716 elno2 27717 noseponlem 27727 noextend 27729 noextendseq 27730 noextenddif 27731 noextendlt 27732 noextendgt 27733 bdayfo 27740 nosepssdm 27749 nolt02olem 27757 nosupno 27766 nosupres 27770 nosupbnd1lem1 27771 nosupbnd1lem2 27772 nosupbnd1lem3 27773 nosupbnd1lem4 27774 nosupbnd1lem5 27775 nosupbnd1lem6 27776 nosupbnd1 27777 nosupbnd2lem1 27778 nosupbnd2 27779 noinfno 27781 noinfres 27785 noinfbnd1lem1 27786 noinfbnd1lem2 27787 noinfbnd1lem3 27788 noinfbnd1lem4 27789 noinfbnd1lem5 27790 noinfbnd1lem6 27791 noinfbnd1 27792 noinfbnd2lem1 27793 noinfbnd2 27794 nosupinfsep 27795 noetasuplem3 27798 noetasuplem4 27799 noetainflem3 27802 noetainflem4 27803 bdaybndex 43393 |
Copyright terms: Public domain | W3C validator |