Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nodmon | Structured version Visualization version GIF version |
Description: The domain of a surreal is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011.) |
Ref | Expression |
---|---|
nodmon | ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elno 33414 | . 2 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | |
2 | fdm 6506 | . . . . 5 ⊢ (𝐴:𝑥⟶{1o, 2o} → dom 𝐴 = 𝑥) | |
3 | 2 | eleq1d 2836 | . . . 4 ⊢ (𝐴:𝑥⟶{1o, 2o} → (dom 𝐴 ∈ On ↔ 𝑥 ∈ On)) |
4 | 3 | biimprcd 253 | . . 3 ⊢ (𝑥 ∈ On → (𝐴:𝑥⟶{1o, 2o} → dom 𝐴 ∈ On)) |
5 | 4 | rexlimiv 3204 | . 2 ⊢ (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → dom 𝐴 ∈ On) |
6 | 1, 5 | sylbi 220 | 1 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 ∃wrex 3071 {cpr 4524 dom cdm 5524 Oncon0 6169 ⟶wf 6331 1oc1o 8105 2oc2o 8106 No csur 33408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-no 33411 |
This theorem is referenced by: nodmord 33421 elno2 33422 noseponlem 33432 noextend 33434 noextendseq 33435 noextenddif 33436 noextendlt 33437 noextendgt 33438 bdayfo 33445 nosepssdm 33454 nolt02olem 33462 nosupno 33471 nosupres 33475 nosupbnd1lem1 33476 nosupbnd1lem2 33477 nosupbnd1lem3 33478 nosupbnd1lem4 33479 nosupbnd1lem5 33480 nosupbnd1lem6 33481 nosupbnd1 33482 nosupbnd2lem1 33483 nosupbnd2 33484 noinfno 33486 noinfres 33490 noinfbnd1lem1 33491 noinfbnd1lem2 33492 noinfbnd1lem3 33493 noinfbnd1lem4 33494 noinfbnd1lem5 33495 noinfbnd1lem6 33496 noinfbnd1 33497 noinfbnd2lem1 33498 noinfbnd2 33499 nosupinfsep 33500 noetasuplem3 33503 noetasuplem4 33504 noetainflem3 33507 noetainflem4 33508 |
Copyright terms: Public domain | W3C validator |