| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clnbgrvtxedg | Structured version Visualization version GIF version | ||
| Description: An edge 𝐸 containing a vertex 𝐴 is an edge in the closed neighborhood of this vertex 𝐴. (Contributed by AV, 25-Dec-2025.) |
| Ref | Expression |
|---|---|
| clnbgrvtxedg.n | ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝐴) |
| clnbgrvtxedg.i | ⊢ 𝐼 = (Edg‘𝐺) |
| clnbgrvtxedg.k | ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} |
| Ref | Expression |
|---|---|
| clnbgrvtxedg | ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸) → 𝐸 ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸) → 𝐸 ∈ 𝐼) | |
| 2 | clnbgrvtxedg.i | . . 3 ⊢ 𝐼 = (Edg‘𝐺) | |
| 3 | clnbgrvtxedg.n | . . 3 ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝐴) | |
| 4 | 2, 3 | clnbgrssedg 47871 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸) → 𝐸 ⊆ 𝑁) |
| 5 | sseq1 3960 | . . 3 ⊢ (𝑥 = 𝐸 → (𝑥 ⊆ 𝑁 ↔ 𝐸 ⊆ 𝑁)) | |
| 6 | clnbgrvtxedg.k | . . 3 ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} | |
| 7 | 5, 6 | elrab2 3650 | . 2 ⊢ (𝐸 ∈ 𝐾 ↔ (𝐸 ∈ 𝐼 ∧ 𝐸 ⊆ 𝑁)) |
| 8 | 1, 4, 7 | sylanbrc 583 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸) → 𝐸 ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {crab 3395 ⊆ wss 3902 ‘cfv 6481 (class class class)co 7346 Edgcedg 29023 UHGraphcuhgr 29032 ClNeighbVtx cclnbgr 47848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-edg 29024 df-uhgr 29034 df-clnbgr 47849 |
| This theorem is referenced by: grlimedgclnbgr 48025 grlimprclnbgredg 48027 grlimgrtrilem1 48031 |
| Copyright terms: Public domain | W3C validator |