| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clnbgrvtxedg | Structured version Visualization version GIF version | ||
| Description: An edge 𝐸 containing a vertex 𝐴 is an edge in the closed neighborhood of this vertex 𝐴. (Contributed by AV, 25-Dec-2025.) |
| Ref | Expression |
|---|---|
| clnbgrvtxedg.n | ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝐴) |
| clnbgrvtxedg.i | ⊢ 𝐼 = (Edg‘𝐺) |
| clnbgrvtxedg.k | ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} |
| Ref | Expression |
|---|---|
| clnbgrvtxedg | ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸) → 𝐸 ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸) → 𝐸 ∈ 𝐼) | |
| 2 | clnbgrvtxedg.i | . . 3 ⊢ 𝐼 = (Edg‘𝐺) | |
| 3 | clnbgrvtxedg.n | . . 3 ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝐴) | |
| 4 | 2, 3 | clnbgrssedg 47826 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸) → 𝐸 ⊆ 𝑁) |
| 5 | sseq1 3963 | . . 3 ⊢ (𝑥 = 𝐸 → (𝑥 ⊆ 𝑁 ↔ 𝐸 ⊆ 𝑁)) | |
| 6 | clnbgrvtxedg.k | . . 3 ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} | |
| 7 | 5, 6 | elrab2 3653 | . 2 ⊢ (𝐸 ∈ 𝐾 ↔ (𝐸 ∈ 𝐼 ∧ 𝐸 ⊆ 𝑁)) |
| 8 | 1, 4, 7 | sylanbrc 583 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸) → 𝐸 ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3396 ⊆ wss 3905 ‘cfv 6486 (class class class)co 7353 Edgcedg 29010 UHGraphcuhgr 29019 ClNeighbVtx cclnbgr 47803 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-edg 29011 df-uhgr 29021 df-clnbgr 47804 |
| This theorem is referenced by: grlimedgclnbgr 47980 grlimprclnbgredg 47982 grlimgrtrilem1 47986 |
| Copyright terms: Public domain | W3C validator |