Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgrvtxedg Structured version   Visualization version   GIF version

Theorem clnbgrvtxedg 48118
Description: An edge 𝐸 containing a vertex 𝐴 is an edge in the closed neighborhood of this vertex 𝐴. (Contributed by AV, 25-Dec-2025.)
Hypotheses
Ref Expression
clnbgrvtxedg.n 𝑁 = (𝐺 ClNeighbVtx 𝐴)
clnbgrvtxedg.i 𝐼 = (Edg‘𝐺)
clnbgrvtxedg.k 𝐾 = {𝑥𝐼𝑥𝑁}
Assertion
Ref Expression
clnbgrvtxedg ((𝐺 ∈ UHGraph ∧ 𝐸𝐼𝐴𝐸) → 𝐸𝐾)
Distinct variable groups:   𝑥,𝐸   𝑥,𝐼   𝑥,𝑁
Allowed substitution hints:   𝐴(𝑥)   𝐺(𝑥)   𝐾(𝑥)

Proof of Theorem clnbgrvtxedg
StepHypRef Expression
1 simp2 1137 . 2 ((𝐺 ∈ UHGraph ∧ 𝐸𝐼𝐴𝐸) → 𝐸𝐼)
2 clnbgrvtxedg.i . . 3 𝐼 = (Edg‘𝐺)
3 clnbgrvtxedg.n . . 3 𝑁 = (𝐺 ClNeighbVtx 𝐴)
42, 3clnbgrssedg 47965 . 2 ((𝐺 ∈ UHGraph ∧ 𝐸𝐼𝐴𝐸) → 𝐸𝑁)
5 sseq1 3956 . . 3 (𝑥 = 𝐸 → (𝑥𝑁𝐸𝑁))
6 clnbgrvtxedg.k . . 3 𝐾 = {𝑥𝐼𝑥𝑁}
75, 6elrab2 3646 . 2 (𝐸𝐾 ↔ (𝐸𝐼𝐸𝑁))
81, 4, 7sylanbrc 583 1 ((𝐺 ∈ UHGraph ∧ 𝐸𝐼𝐴𝐸) → 𝐸𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  {crab 3396  wss 3898  cfv 6486  (class class class)co 7352  Edgcedg 29027  UHGraphcuhgr 29036   ClNeighbVtx cclnbgr 47942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-edg 29028  df-uhgr 29038  df-clnbgr 47943
This theorem is referenced by:  grlimedgclnbgr  48119  grlimprclnbgredg  48121  grlimgrtrilem1  48125
  Copyright terms: Public domain W3C validator