Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlimedgclnbgr Structured version   Visualization version   GIF version

Theorem grlimedgclnbgr 47980
Description: For two locally isomorphic graphs 𝐺 and 𝐻 and a vertex 𝐴 of 𝐺 there are two bijections 𝑓 and 𝑔 mapping the closed neighborhood 𝑁 of 𝐴 onto the closed neighborhood 𝑀 of (𝐹𝐴) and the edges between the vertices in 𝑁 onto the edges between the vertices in 𝑀, so that the mapped vertices of an edge 𝐸 containing the vertex 𝐴 is an edge between the vertices in 𝑀. (Contributed by AV, 25-Dec-2025.)
Hypotheses
Ref Expression
clnbgrvtxedg.n 𝑁 = (𝐺 ClNeighbVtx 𝐴)
clnbgrvtxedg.i 𝐼 = (Edg‘𝐺)
clnbgrvtxedg.k 𝐾 = {𝑥𝐼𝑥𝑁}
grlimedgclnbgr.m 𝑀 = (𝐻 ClNeighbVtx (𝐹𝐴))
grlimedgclnbgr.j 𝐽 = (Edg‘𝐻)
grlimedgclnbgr.l 𝐿 = {𝑥𝐽𝑥𝑀}
Assertion
Ref Expression
grlimedgclnbgr (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸𝐼𝐴𝐸)) → ∃𝑓𝑔(𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿 ∧ (𝑓𝐸) = (𝑔𝐸)))
Distinct variable groups:   𝑥,𝐸   𝑥,𝐼   𝑥,𝑁   𝐴,𝑔,𝑥   𝐴,𝑓   𝑓,𝐸,𝑔   𝑔,𝐹,𝑓   𝑥,𝐹   𝑓,𝐺,𝑔   𝑥,𝐺   𝑓,𝐻,𝑔   𝑥,𝐻   𝑔,𝐼,𝑓   𝑔,𝐽,𝑥
Allowed substitution hints:   𝐽(𝑓)   𝐾(𝑥,𝑓,𝑔)   𝐿(𝑥,𝑓,𝑔)   𝑀(𝑥,𝑓,𝑔)   𝑁(𝑓,𝑔)

Proof of Theorem grlimedgclnbgr
Dummy variables 𝑒 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1l 1198 . . 3 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸𝐼𝐴𝐸)) → 𝐺 ∈ USPGraph)
2 simp1r 1199 . . 3 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸𝐼𝐴𝐸)) → 𝐻 ∈ USPGraph)
3 simp2 1137 . . 3 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸𝐼𝐴𝐸)) → 𝐹 ∈ (𝐺 GraphLocIso 𝐻))
4 eqid 2729 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2729 . . . 4 (Vtx‘𝐻) = (Vtx‘𝐻)
6 eqid 2729 . . . 4 (𝐺 ClNeighbVtx 𝑣) = (𝐺 ClNeighbVtx 𝑣)
7 eqid 2729 . . . 4 (𝐻 ClNeighbVtx (𝐹𝑣)) = (𝐻 ClNeighbVtx (𝐹𝑣))
8 clnbgrvtxedg.i . . . 4 𝐼 = (Edg‘𝐺)
9 grlimedgclnbgr.j . . . 4 𝐽 = (Edg‘𝐻)
10 sseq1 3963 . . . . 5 (𝑥 = 𝑦 → (𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣) ↔ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)))
1110cbvrabv 3407 . . . 4 {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)} = {𝑦𝐼𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}
12 sseq1 3963 . . . . 5 (𝑥 = 𝑦 → (𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣)) ↔ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))))
1312cbvrabv 3407 . . . 4 {𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} = {𝑦𝐽𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))}
144, 5, 6, 7, 8, 9, 11, 13usgrlimprop 47978 . . 3 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑒) = (𝑔𝑒)))))
151, 2, 3, 14syl3anc 1373 . 2 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸𝐼𝐴𝐸)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑒) = (𝑔𝑒)))))
16 uspgruhgr 29147 . . . . . . . 8 (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph)
1716adantr 480 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → 𝐺 ∈ UHGraph)
18173ad2ant1 1133 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸𝐼𝐴𝐸)) → 𝐺 ∈ UHGraph)
198eleq2i 2820 . . . . . . . . 9 (𝐸𝐼𝐸 ∈ (Edg‘𝐺))
2019biimpi 216 . . . . . . . 8 (𝐸𝐼𝐸 ∈ (Edg‘𝐺))
2120adantr 480 . . . . . . 7 ((𝐸𝐼𝐴𝐸) → 𝐸 ∈ (Edg‘𝐺))
22213ad2ant3 1135 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸𝐼𝐴𝐸)) → 𝐸 ∈ (Edg‘𝐺))
23 simp3r 1203 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸𝐼𝐴𝐸)) → 𝐴𝐸)
24 uhgredgrnv 29093 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝐴𝐸) → 𝐴 ∈ (Vtx‘𝐺))
2518, 22, 23, 24syl3anc 1373 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸𝐼𝐴𝐸)) → 𝐴 ∈ (Vtx‘𝐺))
26 eqidd 2730 . . . . . . . . 9 (𝑣 = 𝐴𝑓 = 𝑓)
27 oveq2 7361 . . . . . . . . 9 (𝑣 = 𝐴 → (𝐺 ClNeighbVtx 𝑣) = (𝐺 ClNeighbVtx 𝐴))
28 fveq2 6826 . . . . . . . . . 10 (𝑣 = 𝐴 → (𝐹𝑣) = (𝐹𝐴))
2928oveq2d 7369 . . . . . . . . 9 (𝑣 = 𝐴 → (𝐻 ClNeighbVtx (𝐹𝑣)) = (𝐻 ClNeighbVtx (𝐹𝐴)))
3026, 27, 29f1oeq123d 6762 . . . . . . . 8 (𝑣 = 𝐴 → (𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ↔ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴))))
31 eqidd 2730 . . . . . . . . . . 11 (𝑣 = 𝐴𝑔 = 𝑔)
3227sseq2d 3970 . . . . . . . . . . . 12 (𝑣 = 𝐴 → (𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣) ↔ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)))
3332rabbidv 3404 . . . . . . . . . . 11 (𝑣 = 𝐴 → {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)} = {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)})
3429sseq2d 3970 . . . . . . . . . . . 12 (𝑣 = 𝐴 → (𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣)) ↔ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))))
3534rabbidv 3404 . . . . . . . . . . 11 (𝑣 = 𝐴 → {𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} = {𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))})
3631, 33, 35f1oeq123d 6762 . . . . . . . . . 10 (𝑣 = 𝐴 → (𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ↔ 𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))}))
3733raleqdv 3290 . . . . . . . . . 10 (𝑣 = 𝐴 → (∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑒) = (𝑔𝑒) ↔ ∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓𝑒) = (𝑔𝑒)))
3836, 37anbi12d 632 . . . . . . . . 9 (𝑣 = 𝐴 → ((𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑒) = (𝑔𝑒)) ↔ (𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} ∧ ∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓𝑒) = (𝑔𝑒))))
3938exbidv 1921 . . . . . . . 8 (𝑣 = 𝐴 → (∃𝑔(𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑒) = (𝑔𝑒)) ↔ ∃𝑔(𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} ∧ ∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓𝑒) = (𝑔𝑒))))
4030, 39anbi12d 632 . . . . . . 7 (𝑣 = 𝐴 → ((𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑒) = (𝑔𝑒))) ↔ (𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴)) ∧ ∃𝑔(𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} ∧ ∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓𝑒) = (𝑔𝑒)))))
4140exbidv 1921 . . . . . 6 (𝑣 = 𝐴 → (∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑒) = (𝑔𝑒))) ↔ ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴)) ∧ ∃𝑔(𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} ∧ ∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓𝑒) = (𝑔𝑒)))))
4241rspcv 3575 . . . . 5 (𝐴 ∈ (Vtx‘𝐺) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑒) = (𝑔𝑒))) → ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴)) ∧ ∃𝑔(𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} ∧ ∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓𝑒) = (𝑔𝑒)))))
4325, 42syl 17 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸𝐼𝐴𝐸)) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑒) = (𝑔𝑒))) → ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴)) ∧ ∃𝑔(𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} ∧ ∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓𝑒) = (𝑔𝑒)))))
44 eqid 2729 . . . . . . . . . . . . 13 𝑓 = 𝑓
45 id 22 . . . . . . . . . . . . . 14 (𝑓 = 𝑓𝑓 = 𝑓)
46 clnbgrvtxedg.n . . . . . . . . . . . . . . 15 𝑁 = (𝐺 ClNeighbVtx 𝐴)
4746a1i 11 . . . . . . . . . . . . . 14 (𝑓 = 𝑓𝑁 = (𝐺 ClNeighbVtx 𝐴))
48 grlimedgclnbgr.m . . . . . . . . . . . . . . 15 𝑀 = (𝐻 ClNeighbVtx (𝐹𝐴))
4948a1i 11 . . . . . . . . . . . . . 14 (𝑓 = 𝑓𝑀 = (𝐻 ClNeighbVtx (𝐹𝐴)))
5045, 47, 49f1oeq123d 6762 . . . . . . . . . . . . 13 (𝑓 = 𝑓 → (𝑓:𝑁1-1-onto𝑀𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴))))
5144, 50ax-mp 5 . . . . . . . . . . . 12 (𝑓:𝑁1-1-onto𝑀𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴)))
5251biimpri 228 . . . . . . . . . . 11 (𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴)) → 𝑓:𝑁1-1-onto𝑀)
5352adantl 481 . . . . . . . . . 10 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸𝐼𝐴𝐸)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴))) → 𝑓:𝑁1-1-onto𝑀)
5453adantr 480 . . . . . . . . 9 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸𝐼𝐴𝐸)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴))) ∧ (𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} ∧ ∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓𝑒) = (𝑔𝑒))) → 𝑓:𝑁1-1-onto𝑀)
55 eqid 2729 . . . . . . . . . . . . 13 𝑔 = 𝑔
56 id 22 . . . . . . . . . . . . . 14 (𝑔 = 𝑔𝑔 = 𝑔)
57 clnbgrvtxedg.k . . . . . . . . . . . . . . . 16 𝐾 = {𝑥𝐼𝑥𝑁}
5846sseq2i 3967 . . . . . . . . . . . . . . . 16 (𝑥𝑁𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴))
5957, 58rabbieq 3405 . . . . . . . . . . . . . . 15 𝐾 = {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}
6059a1i 11 . . . . . . . . . . . . . 14 (𝑔 = 𝑔𝐾 = {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)})
61 grlimedgclnbgr.l . . . . . . . . . . . . . . . 16 𝐿 = {𝑥𝐽𝑥𝑀}
6248sseq2i 3967 . . . . . . . . . . . . . . . 16 (𝑥𝑀𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴)))
6361, 62rabbieq 3405 . . . . . . . . . . . . . . 15 𝐿 = {𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))}
6463a1i 11 . . . . . . . . . . . . . 14 (𝑔 = 𝑔𝐿 = {𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))})
6556, 60, 64f1oeq123d 6762 . . . . . . . . . . . . 13 (𝑔 = 𝑔 → (𝑔:𝐾1-1-onto𝐿𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))}))
6655, 65ax-mp 5 . . . . . . . . . . . 12 (𝑔:𝐾1-1-onto𝐿𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))})
6766biimpri 228 . . . . . . . . . . 11 (𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} → 𝑔:𝐾1-1-onto𝐿)
6867adantr 480 . . . . . . . . . 10 ((𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} ∧ ∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓𝑒) = (𝑔𝑒)) → 𝑔:𝐾1-1-onto𝐿)
6968adantl 481 . . . . . . . . 9 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸𝐼𝐴𝐸)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴))) ∧ (𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} ∧ ∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓𝑒) = (𝑔𝑒))) → 𝑔:𝐾1-1-onto𝐿)
70 simp3l 1202 . . . . . . . . . . . . . 14 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸𝐼𝐴𝐸)) → 𝐸𝐼)
71 eqid 2729 . . . . . . . . . . . . . . 15 (𝐺 ClNeighbVtx 𝐴) = (𝐺 ClNeighbVtx 𝐴)
72 eqid 2729 . . . . . . . . . . . . . . 15 {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} = {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}
7371, 8, 72clnbgrvtxedg 47979 . . . . . . . . . . . . . 14 ((𝐺 ∈ UHGraph ∧ 𝐸𝐼𝐴𝐸) → 𝐸 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)})
7418, 70, 23, 73syl3anc 1373 . . . . . . . . . . . . 13 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸𝐼𝐴𝐸)) → 𝐸 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)})
75 imaeq2 6011 . . . . . . . . . . . . . . 15 (𝑒 = 𝐸 → (𝑓𝑒) = (𝑓𝐸))
76 fveq2 6826 . . . . . . . . . . . . . . 15 (𝑒 = 𝐸 → (𝑔𝑒) = (𝑔𝐸))
7775, 76eqeq12d 2745 . . . . . . . . . . . . . 14 (𝑒 = 𝐸 → ((𝑓𝑒) = (𝑔𝑒) ↔ (𝑓𝐸) = (𝑔𝐸)))
7877rspcv 3575 . . . . . . . . . . . . 13 (𝐸 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} → (∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓𝑒) = (𝑔𝑒) → (𝑓𝐸) = (𝑔𝐸)))
7974, 78syl 17 . . . . . . . . . . . 12 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸𝐼𝐴𝐸)) → (∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓𝑒) = (𝑔𝑒) → (𝑓𝐸) = (𝑔𝐸)))
8079adantld 490 . . . . . . . . . . 11 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸𝐼𝐴𝐸)) → ((𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} ∧ ∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓𝑒) = (𝑔𝑒)) → (𝑓𝐸) = (𝑔𝐸)))
8180adantr 480 . . . . . . . . . 10 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸𝐼𝐴𝐸)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴))) → ((𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} ∧ ∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓𝑒) = (𝑔𝑒)) → (𝑓𝐸) = (𝑔𝐸)))
8281imp 406 . . . . . . . . 9 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸𝐼𝐴𝐸)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴))) ∧ (𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} ∧ ∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓𝑒) = (𝑔𝑒))) → (𝑓𝐸) = (𝑔𝐸))
8354, 69, 823jca 1128 . . . . . . . 8 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸𝐼𝐴𝐸)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴))) ∧ (𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} ∧ ∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓𝑒) = (𝑔𝑒))) → (𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿 ∧ (𝑓𝐸) = (𝑔𝐸)))
8483ex 412 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸𝐼𝐴𝐸)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴))) → ((𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} ∧ ∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓𝑒) = (𝑔𝑒)) → (𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿 ∧ (𝑓𝐸) = (𝑔𝐸))))
8584eximdv 1917 . . . . . 6 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸𝐼𝐴𝐸)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴))) → (∃𝑔(𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} ∧ ∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓𝑒) = (𝑔𝑒)) → ∃𝑔(𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿 ∧ (𝑓𝐸) = (𝑔𝐸))))
8685expimpd 453 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸𝐼𝐴𝐸)) → ((𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴)) ∧ ∃𝑔(𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} ∧ ∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓𝑒) = (𝑔𝑒))) → ∃𝑔(𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿 ∧ (𝑓𝐸) = (𝑔𝐸))))
8786eximdv 1917 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸𝐼𝐴𝐸)) → (∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴)) ∧ ∃𝑔(𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} ∧ ∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓𝑒) = (𝑔𝑒))) → ∃𝑓𝑔(𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿 ∧ (𝑓𝐸) = (𝑔𝐸))))
8843, 87syld 47 . . 3 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸𝐼𝐴𝐸)) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑒) = (𝑔𝑒))) → ∃𝑓𝑔(𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿 ∧ (𝑓𝐸) = (𝑔𝐸))))
8988adantld 490 . 2 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸𝐼𝐴𝐸)) → ((𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥𝐽𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑒 ∈ {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑒) = (𝑔𝑒)))) → ∃𝑓𝑔(𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿 ∧ (𝑓𝐸) = (𝑔𝐸))))
9015, 89mpd 15 1 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸𝐼𝐴𝐸)) → ∃𝑓𝑔(𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿 ∧ (𝑓𝐸) = (𝑔𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  {crab 3396  wss 3905  cima 5626  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  Vtxcvtx 28959  Edgcedg 29010  UHGraphcuhgr 29019  USPGraphcuspgr 29111   ClNeighbVtx cclnbgr 47803   GraphLocIso cgrlim 47961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-1o 8395  df-map 8762  df-vtx 28961  df-iedg 28962  df-edg 29011  df-uhgr 29021  df-upgr 29045  df-uspgr 29113  df-clnbgr 47804  df-isubgr 47846  df-grim 47863  df-gric 47866  df-grlim 47963
This theorem is referenced by:  grlimprclnbgr  47981
  Copyright terms: Public domain W3C validator