| Step | Hyp | Ref
| Expression |
| 1 | | simp1l 1198 |
. . 3
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸)) → 𝐺 ∈ USPGraph) |
| 2 | | simp1r 1199 |
. . 3
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸)) → 𝐻 ∈ USPGraph) |
| 3 | | simp2 1137 |
. . 3
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸)) → 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) |
| 4 | | eqid 2729 |
. . . 4
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 5 | | eqid 2729 |
. . . 4
⊢
(Vtx‘𝐻) =
(Vtx‘𝐻) |
| 6 | | eqid 2729 |
. . . 4
⊢ (𝐺 ClNeighbVtx 𝑣) = (𝐺 ClNeighbVtx 𝑣) |
| 7 | | eqid 2729 |
. . . 4
⊢ (𝐻 ClNeighbVtx (𝐹‘𝑣)) = (𝐻 ClNeighbVtx (𝐹‘𝑣)) |
| 8 | | clnbgrvtxedg.i |
. . . 4
⊢ 𝐼 = (Edg‘𝐺) |
| 9 | | grlimedgclnbgr.j |
. . . 4
⊢ 𝐽 = (Edg‘𝐻) |
| 10 | | sseq1 3963 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣) ↔ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣))) |
| 11 | 10 | cbvrabv 3407 |
. . . 4
⊢ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)} = {𝑦 ∈ 𝐼 ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} |
| 12 | | sseq1 3963 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣)) ↔ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣)))) |
| 13 | 12 | cbvrabv 3407 |
. . . 4
⊢ {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} = {𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} |
| 14 | 4, 5, 6, 7, 8, 9, 11, 13 | usgrlimprop 47978 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} ∧ ∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓 “ 𝑒) = (𝑔‘𝑒))))) |
| 15 | 1, 2, 3, 14 | syl3anc 1373 |
. 2
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} ∧ ∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓 “ 𝑒) = (𝑔‘𝑒))))) |
| 16 | | uspgruhgr 29147 |
. . . . . . . 8
⊢ (𝐺 ∈ USPGraph → 𝐺 ∈
UHGraph) |
| 17 | 16 | adantr 480 |
. . . . . . 7
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → 𝐺 ∈
UHGraph) |
| 18 | 17 | 3ad2ant1 1133 |
. . . . . 6
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸)) → 𝐺 ∈ UHGraph) |
| 19 | 8 | eleq2i 2820 |
. . . . . . . . 9
⊢ (𝐸 ∈ 𝐼 ↔ 𝐸 ∈ (Edg‘𝐺)) |
| 20 | 19 | biimpi 216 |
. . . . . . . 8
⊢ (𝐸 ∈ 𝐼 → 𝐸 ∈ (Edg‘𝐺)) |
| 21 | 20 | adantr 480 |
. . . . . . 7
⊢ ((𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸) → 𝐸 ∈ (Edg‘𝐺)) |
| 22 | 21 | 3ad2ant3 1135 |
. . . . . 6
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸)) → 𝐸 ∈ (Edg‘𝐺)) |
| 23 | | simp3r 1203 |
. . . . . 6
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸)) → 𝐴 ∈ 𝐸) |
| 24 | | uhgredgrnv 29093 |
. . . . . 6
⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝐴 ∈ 𝐸) → 𝐴 ∈ (Vtx‘𝐺)) |
| 25 | 18, 22, 23, 24 | syl3anc 1373 |
. . . . 5
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸)) → 𝐴 ∈ (Vtx‘𝐺)) |
| 26 | | eqidd 2730 |
. . . . . . . . 9
⊢ (𝑣 = 𝐴 → 𝑓 = 𝑓) |
| 27 | | oveq2 7361 |
. . . . . . . . 9
⊢ (𝑣 = 𝐴 → (𝐺 ClNeighbVtx 𝑣) = (𝐺 ClNeighbVtx 𝐴)) |
| 28 | | fveq2 6826 |
. . . . . . . . . 10
⊢ (𝑣 = 𝐴 → (𝐹‘𝑣) = (𝐹‘𝐴)) |
| 29 | 28 | oveq2d 7369 |
. . . . . . . . 9
⊢ (𝑣 = 𝐴 → (𝐻 ClNeighbVtx (𝐹‘𝑣)) = (𝐻 ClNeighbVtx (𝐹‘𝐴))) |
| 30 | 26, 27, 29 | f1oeq123d 6762 |
. . . . . . . 8
⊢ (𝑣 = 𝐴 → (𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑣)) ↔ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴)))) |
| 31 | | eqidd 2730 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝐴 → 𝑔 = 𝑔) |
| 32 | 27 | sseq2d 3970 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝐴 → (𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣) ↔ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴))) |
| 33 | 32 | rabbidv 3404 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝐴 → {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)} = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}) |
| 34 | 29 | sseq2d 3970 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝐴 → (𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣)) ↔ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴)))) |
| 35 | 34 | rabbidv 3404 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝐴 → {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))}) |
| 36 | 31, 33, 35 | f1oeq123d 6762 |
. . . . . . . . . 10
⊢ (𝑣 = 𝐴 → (𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} ↔ 𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))})) |
| 37 | 33 | raleqdv 3290 |
. . . . . . . . . 10
⊢ (𝑣 = 𝐴 → (∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓 “ 𝑒) = (𝑔‘𝑒) ↔ ∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓 “ 𝑒) = (𝑔‘𝑒))) |
| 38 | 36, 37 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑣 = 𝐴 → ((𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} ∧ ∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓 “ 𝑒) = (𝑔‘𝑒)) ↔ (𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} ∧ ∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓 “ 𝑒) = (𝑔‘𝑒)))) |
| 39 | 38 | exbidv 1921 |
. . . . . . . 8
⊢ (𝑣 = 𝐴 → (∃𝑔(𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} ∧ ∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓 “ 𝑒) = (𝑔‘𝑒)) ↔ ∃𝑔(𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} ∧ ∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓 “ 𝑒) = (𝑔‘𝑒)))) |
| 40 | 30, 39 | anbi12d 632 |
. . . . . . 7
⊢ (𝑣 = 𝐴 → ((𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} ∧ ∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓 “ 𝑒) = (𝑔‘𝑒))) ↔ (𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴)) ∧ ∃𝑔(𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} ∧ ∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓 “ 𝑒) = (𝑔‘𝑒))))) |
| 41 | 40 | exbidv 1921 |
. . . . . 6
⊢ (𝑣 = 𝐴 → (∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} ∧ ∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓 “ 𝑒) = (𝑔‘𝑒))) ↔ ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴)) ∧ ∃𝑔(𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} ∧ ∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓 “ 𝑒) = (𝑔‘𝑒))))) |
| 42 | 41 | rspcv 3575 |
. . . . 5
⊢ (𝐴 ∈ (Vtx‘𝐺) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} ∧ ∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓 “ 𝑒) = (𝑔‘𝑒))) → ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴)) ∧ ∃𝑔(𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} ∧ ∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓 “ 𝑒) = (𝑔‘𝑒))))) |
| 43 | 25, 42 | syl 17 |
. . . 4
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸)) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} ∧ ∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓 “ 𝑒) = (𝑔‘𝑒))) → ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴)) ∧ ∃𝑔(𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} ∧ ∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓 “ 𝑒) = (𝑔‘𝑒))))) |
| 44 | | eqid 2729 |
. . . . . . . . . . . . 13
⊢ 𝑓 = 𝑓 |
| 45 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑓 → 𝑓 = 𝑓) |
| 46 | | clnbgrvtxedg.n |
. . . . . . . . . . . . . . 15
⊢ 𝑁 = (𝐺 ClNeighbVtx 𝐴) |
| 47 | 46 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑓 → 𝑁 = (𝐺 ClNeighbVtx 𝐴)) |
| 48 | | grlimedgclnbgr.m |
. . . . . . . . . . . . . . 15
⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝐴)) |
| 49 | 48 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑓 → 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝐴))) |
| 50 | 45, 47, 49 | f1oeq123d 6762 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑓 → (𝑓:𝑁–1-1-onto→𝑀 ↔ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴)))) |
| 51 | 44, 50 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (𝑓:𝑁–1-1-onto→𝑀 ↔ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴))) |
| 52 | 51 | biimpri 228 |
. . . . . . . . . . 11
⊢ (𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴)) → 𝑓:𝑁–1-1-onto→𝑀) |
| 53 | 52 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴))) → 𝑓:𝑁–1-1-onto→𝑀) |
| 54 | 53 | adantr 480 |
. . . . . . . . 9
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹 ∈
(𝐺 GraphLocIso 𝐻) ∧ (𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴))) ∧ (𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} ∧ ∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓 “ 𝑒) = (𝑔‘𝑒))) → 𝑓:𝑁–1-1-onto→𝑀) |
| 55 | | eqid 2729 |
. . . . . . . . . . . . 13
⊢ 𝑔 = 𝑔 |
| 56 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = 𝑔 → 𝑔 = 𝑔) |
| 57 | | clnbgrvtxedg.k |
. . . . . . . . . . . . . . . 16
⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} |
| 58 | 46 | sseq2i 3967 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ⊆ 𝑁 ↔ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)) |
| 59 | 57, 58 | rabbieq 3405 |
. . . . . . . . . . . . . . 15
⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} |
| 60 | 59 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = 𝑔 → 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}) |
| 61 | | grlimedgclnbgr.l |
. . . . . . . . . . . . . . . 16
⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} |
| 62 | 48 | sseq2i 3967 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ⊆ 𝑀 ↔ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))) |
| 63 | 61, 62 | rabbieq 3405 |
. . . . . . . . . . . . . . 15
⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} |
| 64 | 63 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = 𝑔 → 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))}) |
| 65 | 56, 60, 64 | f1oeq123d 6762 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑔 → (𝑔:𝐾–1-1-onto→𝐿 ↔ 𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))})) |
| 66 | 55, 65 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (𝑔:𝐾–1-1-onto→𝐿 ↔ 𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))}) |
| 67 | 66 | biimpri 228 |
. . . . . . . . . . 11
⊢ (𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} → 𝑔:𝐾–1-1-onto→𝐿) |
| 68 | 67 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} ∧ ∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓 “ 𝑒) = (𝑔‘𝑒)) → 𝑔:𝐾–1-1-onto→𝐿) |
| 69 | 68 | adantl 481 |
. . . . . . . . 9
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹 ∈
(𝐺 GraphLocIso 𝐻) ∧ (𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴))) ∧ (𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} ∧ ∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓 “ 𝑒) = (𝑔‘𝑒))) → 𝑔:𝐾–1-1-onto→𝐿) |
| 70 | | simp3l 1202 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸)) → 𝐸 ∈ 𝐼) |
| 71 | | eqid 2729 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ClNeighbVtx 𝐴) = (𝐺 ClNeighbVtx 𝐴) |
| 72 | | eqid 2729 |
. . . . . . . . . . . . . . 15
⊢ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} |
| 73 | 71, 8, 72 | clnbgrvtxedg 47979 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸) → 𝐸 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}) |
| 74 | 18, 70, 23, 73 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸)) → 𝐸 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}) |
| 75 | | imaeq2 6011 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = 𝐸 → (𝑓 “ 𝑒) = (𝑓 “ 𝐸)) |
| 76 | | fveq2 6826 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = 𝐸 → (𝑔‘𝑒) = (𝑔‘𝐸)) |
| 77 | 75, 76 | eqeq12d 2745 |
. . . . . . . . . . . . . 14
⊢ (𝑒 = 𝐸 → ((𝑓 “ 𝑒) = (𝑔‘𝑒) ↔ (𝑓 “ 𝐸) = (𝑔‘𝐸))) |
| 78 | 77 | rspcv 3575 |
. . . . . . . . . . . . 13
⊢ (𝐸 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} → (∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓 “ 𝑒) = (𝑔‘𝑒) → (𝑓 “ 𝐸) = (𝑔‘𝐸))) |
| 79 | 74, 78 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸)) → (∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓 “ 𝑒) = (𝑔‘𝑒) → (𝑓 “ 𝐸) = (𝑔‘𝐸))) |
| 80 | 79 | adantld 490 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸)) → ((𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} ∧ ∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓 “ 𝑒) = (𝑔‘𝑒)) → (𝑓 “ 𝐸) = (𝑔‘𝐸))) |
| 81 | 80 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴))) → ((𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} ∧ ∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓 “ 𝑒) = (𝑔‘𝑒)) → (𝑓 “ 𝐸) = (𝑔‘𝐸))) |
| 82 | 81 | imp 406 |
. . . . . . . . 9
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹 ∈
(𝐺 GraphLocIso 𝐻) ∧ (𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴))) ∧ (𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} ∧ ∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (𝑓 “ 𝐸) = (𝑔‘𝐸)) |
| 83 | 54, 69, 82 | 3jca 1128 |
. . . . . . . 8
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹 ∈
(𝐺 GraphLocIso 𝐻) ∧ (𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴))) ∧ (𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} ∧ ∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ (𝑓 “ 𝐸) = (𝑔‘𝐸))) |
| 84 | 83 | ex 412 |
. . . . . . 7
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴))) → ((𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} ∧ ∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓 “ 𝑒) = (𝑔‘𝑒)) → (𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ (𝑓 “ 𝐸) = (𝑔‘𝐸)))) |
| 85 | 84 | eximdv 1917 |
. . . . . 6
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴))) → (∃𝑔(𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} ∧ ∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓 “ 𝑒) = (𝑔‘𝑒)) → ∃𝑔(𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ (𝑓 “ 𝐸) = (𝑔‘𝐸)))) |
| 86 | 85 | expimpd 453 |
. . . . 5
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸)) → ((𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴)) ∧ ∃𝑔(𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} ∧ ∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓 “ 𝑒) = (𝑔‘𝑒))) → ∃𝑔(𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ (𝑓 “ 𝐸) = (𝑔‘𝐸)))) |
| 87 | 86 | eximdv 1917 |
. . . 4
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸)) → (∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴)) ∧ ∃𝑔(𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} ∧ ∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} (𝑓 “ 𝑒) = (𝑔‘𝑒))) → ∃𝑓∃𝑔(𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ (𝑓 “ 𝐸) = (𝑔‘𝐸)))) |
| 88 | 43, 87 | syld 47 |
. . 3
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸)) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} ∧ ∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓 “ 𝑒) = (𝑔‘𝑒))) → ∃𝑓∃𝑔(𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ (𝑓 “ 𝐸) = (𝑔‘𝐸)))) |
| 89 | 88 | adantld 490 |
. 2
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸)) → ((𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} ∧ ∀𝑒 ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓 “ 𝑒) = (𝑔‘𝑒)))) → ∃𝑓∃𝑔(𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ (𝑓 “ 𝐸) = (𝑔‘𝐸)))) |
| 90 | 15, 89 | mpd 15 |
1
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸)) → ∃𝑓∃𝑔(𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ (𝑓 “ 𝐸) = (𝑔‘𝐸))) |