Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  usgrlimprop Structured version   Visualization version   GIF version

Theorem usgrlimprop 47933
Description: Properties of a local isomorphism of simple pseudographs. (Contributed by AV, 17-Aug-2025.)
Hypotheses
Ref Expression
usgrlimprop.v 𝑉 = (Vtx‘𝐺)
usgrlimprop.w 𝑊 = (Vtx‘𝐻)
usgrlimprop.n 𝑁 = (𝐺 ClNeighbVtx 𝑣)
usgrlimprop.m 𝑀 = (𝐻 ClNeighbVtx (𝐹𝑣))
usgrlimprop.i 𝐼 = (Edg‘𝐺)
usgrlimprop.j 𝐽 = (Edg‘𝐻)
usgrlimprop.k 𝐾 = {𝑥𝐼𝑥𝑁}
usgrlimprop.l 𝐿 = {𝑥𝐽𝑥𝑀}
Assertion
Ref Expression
usgrlimprop ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒)))))
Distinct variable groups:   𝑓,𝐹,𝑣   𝑒,𝐺,𝑓,𝑔,𝑣,𝑥   𝑒,𝐻,𝑓,𝑔,𝑣,𝑥   𝑥,𝐼   𝑥,𝐽   𝑒,𝐾,𝑔,𝑥   𝑔,𝐿,𝑥   𝑒,𝑀,𝑓,𝑔,𝑥   𝑒,𝑁,𝑓,𝑔,𝑥   𝑣,𝑉
Allowed substitution hints:   𝐹(𝑥,𝑒,𝑔)   𝐼(𝑣,𝑒,𝑓,𝑔)   𝐽(𝑣,𝑒,𝑓,𝑔)   𝐾(𝑣,𝑓)   𝐿(𝑣,𝑒,𝑓)   𝑀(𝑣)   𝑁(𝑣)   𝑉(𝑥,𝑒,𝑓,𝑔)   𝑊(𝑥,𝑣,𝑒,𝑓,𝑔)

Proof of Theorem usgrlimprop
StepHypRef Expression
1 simp3 1138 . 2 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → 𝐹 ∈ (𝐺 GraphLocIso 𝐻))
2 usgrlimprop.v . . 3 𝑉 = (Vtx‘𝐺)
3 usgrlimprop.w . . 3 𝑊 = (Vtx‘𝐻)
4 usgrlimprop.n . . 3 𝑁 = (𝐺 ClNeighbVtx 𝑣)
5 usgrlimprop.m . . 3 𝑀 = (𝐻 ClNeighbVtx (𝐹𝑣))
6 usgrlimprop.i . . 3 𝐼 = (Edg‘𝐺)
7 usgrlimprop.j . . 3 𝐽 = (Edg‘𝐻)
8 usgrlimprop.k . . 3 𝐾 = {𝑥𝐼𝑥𝑁}
9 usgrlimprop.l . . 3 𝐿 = {𝑥𝐽𝑥𝑀}
102, 3, 4, 5, 6, 7, 8, 9uspgrlim 47932 . 2 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒))))))
111, 10mpbid 232 1 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wex 1778  wcel 2107  wral 3050  {crab 3419  wss 3931  cima 5668  1-1-ontowf1o 6540  cfv 6541  (class class class)co 7413  Vtxcvtx 28942  Edgcedg 28993  USPGraphcuspgr 29094   ClNeighbVtx cclnbgr 47778   GraphLocIso cgrlim 47916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-1o 8488  df-map 8850  df-vtx 28944  df-iedg 28945  df-edg 28994  df-uspgr 29096  df-clnbgr 47779  df-isubgr 47820  df-grim 47837  df-gric 47840  df-grlim 47918
This theorem is referenced by:  grlimgrtri  47936
  Copyright terms: Public domain W3C validator