![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > usgrlimprop | Structured version Visualization version GIF version |
Description: Properties of a local isomorphism of simple pseudographs. (Contributed by AV, 17-Aug-2025.) |
Ref | Expression |
---|---|
usgrlimprop.v | ⊢ 𝑉 = (Vtx‘𝐺) |
usgrlimprop.w | ⊢ 𝑊 = (Vtx‘𝐻) |
usgrlimprop.n | ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) |
usgrlimprop.m | ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) |
usgrlimprop.i | ⊢ 𝐼 = (Edg‘𝐺) |
usgrlimprop.j | ⊢ 𝐽 = (Edg‘𝐻) |
usgrlimprop.k | ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} |
usgrlimprop.l | ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} |
Ref | Expression |
---|---|
usgrlimprop | ⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1138 | . 2 ⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) | |
2 | usgrlimprop.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | usgrlimprop.w | . . 3 ⊢ 𝑊 = (Vtx‘𝐻) | |
4 | usgrlimprop.n | . . 3 ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) | |
5 | usgrlimprop.m | . . 3 ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) | |
6 | usgrlimprop.i | . . 3 ⊢ 𝐼 = (Edg‘𝐺) | |
7 | usgrlimprop.j | . . 3 ⊢ 𝐽 = (Edg‘𝐻) | |
8 | usgrlimprop.k | . . 3 ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} | |
9 | usgrlimprop.l | . . 3 ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} | |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | uspgrlim 47806 | . 2 ⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒)))))) |
11 | 1, 10 | mpbid 232 | 1 ⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∀wral 3067 {crab 3443 ⊆ wss 3976 “ cima 5698 –1-1-onto→wf1o 6567 ‘cfv 6568 (class class class)co 7443 Vtxcvtx 29023 Edgcedg 29074 USPGraphcuspgr 29175 ClNeighbVtx cclnbgr 47682 GraphLocIso cgrlim 47790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-ov 7446 df-oprab 7447 df-mpo 7448 df-1st 8024 df-2nd 8025 df-1o 8516 df-map 8880 df-vtx 29025 df-iedg 29026 df-edg 29075 df-uspgr 29177 df-clnbgr 47683 df-isubgr 47723 df-grim 47738 df-gric 47741 df-grlim 47792 |
This theorem is referenced by: grlimgrtri 47810 |
Copyright terms: Public domain | W3C validator |