Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  usgrlimprop Structured version   Visualization version   GIF version

Theorem usgrlimprop 47807
Description: Properties of a local isomorphism of simple pseudographs. (Contributed by AV, 17-Aug-2025.)
Hypotheses
Ref Expression
usgrlimprop.v 𝑉 = (Vtx‘𝐺)
usgrlimprop.w 𝑊 = (Vtx‘𝐻)
usgrlimprop.n 𝑁 = (𝐺 ClNeighbVtx 𝑣)
usgrlimprop.m 𝑀 = (𝐻 ClNeighbVtx (𝐹𝑣))
usgrlimprop.i 𝐼 = (Edg‘𝐺)
usgrlimprop.j 𝐽 = (Edg‘𝐻)
usgrlimprop.k 𝐾 = {𝑥𝐼𝑥𝑁}
usgrlimprop.l 𝐿 = {𝑥𝐽𝑥𝑀}
Assertion
Ref Expression
usgrlimprop ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒)))))
Distinct variable groups:   𝑓,𝐹,𝑣   𝑒,𝐺,𝑓,𝑔,𝑣,𝑥   𝑒,𝐻,𝑓,𝑔,𝑣,𝑥   𝑥,𝐼   𝑥,𝐽   𝑒,𝐾,𝑔,𝑥   𝑔,𝐿,𝑥   𝑒,𝑀,𝑓,𝑔,𝑥   𝑒,𝑁,𝑓,𝑔,𝑥   𝑣,𝑉
Allowed substitution hints:   𝐹(𝑥,𝑒,𝑔)   𝐼(𝑣,𝑒,𝑓,𝑔)   𝐽(𝑣,𝑒,𝑓,𝑔)   𝐾(𝑣,𝑓)   𝐿(𝑣,𝑒,𝑓)   𝑀(𝑣)   𝑁(𝑣)   𝑉(𝑥,𝑒,𝑓,𝑔)   𝑊(𝑥,𝑣,𝑒,𝑓,𝑔)

Proof of Theorem usgrlimprop
StepHypRef Expression
1 simp3 1138 . 2 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → 𝐹 ∈ (𝐺 GraphLocIso 𝐻))
2 usgrlimprop.v . . 3 𝑉 = (Vtx‘𝐺)
3 usgrlimprop.w . . 3 𝑊 = (Vtx‘𝐻)
4 usgrlimprop.n . . 3 𝑁 = (𝐺 ClNeighbVtx 𝑣)
5 usgrlimprop.m . . 3 𝑀 = (𝐻 ClNeighbVtx (𝐹𝑣))
6 usgrlimprop.i . . 3 𝐼 = (Edg‘𝐺)
7 usgrlimprop.j . . 3 𝐽 = (Edg‘𝐻)
8 usgrlimprop.k . . 3 𝐾 = {𝑥𝐼𝑥𝑁}
9 usgrlimprop.l . . 3 𝐿 = {𝑥𝐽𝑥𝑀}
102, 3, 4, 5, 6, 7, 8, 9uspgrlim 47806 . 2 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒))))))
111, 10mpbid 232 1 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wral 3067  {crab 3443  wss 3976  cima 5698  1-1-ontowf1o 6567  cfv 6568  (class class class)co 7443  Vtxcvtx 29023  Edgcedg 29074  USPGraphcuspgr 29175   ClNeighbVtx cclnbgr 47682   GraphLocIso cgrlim 47790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7764
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-suc 6396  df-iota 6520  df-fun 6570  df-fn 6571  df-f 6572  df-f1 6573  df-fo 6574  df-f1o 6575  df-fv 6576  df-ov 7446  df-oprab 7447  df-mpo 7448  df-1st 8024  df-2nd 8025  df-1o 8516  df-map 8880  df-vtx 29025  df-iedg 29026  df-edg 29075  df-uspgr 29177  df-clnbgr 47683  df-isubgr 47723  df-grim 47738  df-gric 47741  df-grlim 47792
This theorem is referenced by:  grlimgrtri  47810
  Copyright terms: Public domain W3C validator