Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  usgrlimprop Structured version   Visualization version   GIF version

Theorem usgrlimprop 48155
Description: Properties of a local isomorphism of simple pseudographs. (Contributed by AV, 17-Aug-2025.)
Hypotheses
Ref Expression
usgrlimprop.v 𝑉 = (Vtx‘𝐺)
usgrlimprop.w 𝑊 = (Vtx‘𝐻)
usgrlimprop.n 𝑁 = (𝐺 ClNeighbVtx 𝑣)
usgrlimprop.m 𝑀 = (𝐻 ClNeighbVtx (𝐹𝑣))
usgrlimprop.i 𝐼 = (Edg‘𝐺)
usgrlimprop.j 𝐽 = (Edg‘𝐻)
usgrlimprop.k 𝐾 = {𝑥𝐼𝑥𝑁}
usgrlimprop.l 𝐿 = {𝑥𝐽𝑥𝑀}
Assertion
Ref Expression
usgrlimprop ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒)))))
Distinct variable groups:   𝑓,𝐹,𝑣   𝑒,𝐺,𝑓,𝑔,𝑣,𝑥   𝑒,𝐻,𝑓,𝑔,𝑣,𝑥   𝑥,𝐼   𝑥,𝐽   𝑒,𝐾,𝑔,𝑥   𝑔,𝐿,𝑥   𝑒,𝑀,𝑓,𝑔,𝑥   𝑒,𝑁,𝑓,𝑔,𝑥   𝑣,𝑉
Allowed substitution hints:   𝐹(𝑥,𝑒,𝑔)   𝐼(𝑣,𝑒,𝑓,𝑔)   𝐽(𝑣,𝑒,𝑓,𝑔)   𝐾(𝑣,𝑓)   𝐿(𝑣,𝑒,𝑓)   𝑀(𝑣)   𝑁(𝑣)   𝑉(𝑥,𝑒,𝑓,𝑔)   𝑊(𝑥,𝑣,𝑒,𝑓,𝑔)

Proof of Theorem usgrlimprop
StepHypRef Expression
1 simp3 1138 . 2 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → 𝐹 ∈ (𝐺 GraphLocIso 𝐻))
2 usgrlimprop.v . . 3 𝑉 = (Vtx‘𝐺)
3 usgrlimprop.w . . 3 𝑊 = (Vtx‘𝐻)
4 usgrlimprop.n . . 3 𝑁 = (𝐺 ClNeighbVtx 𝑣)
5 usgrlimprop.m . . 3 𝑀 = (𝐻 ClNeighbVtx (𝐹𝑣))
6 usgrlimprop.i . . 3 𝐼 = (Edg‘𝐺)
7 usgrlimprop.j . . 3 𝐽 = (Edg‘𝐻)
8 usgrlimprop.k . . 3 𝐾 = {𝑥𝐼𝑥𝑁}
9 usgrlimprop.l . . 3 𝐿 = {𝑥𝐽𝑥𝑀}
102, 3, 4, 5, 6, 7, 8, 9uspgrlim 48154 . 2 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒))))))
111, 10mpbid 232 1 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  wral 3048  {crab 3396  wss 3898  cima 5624  1-1-ontowf1o 6488  cfv 6489  (class class class)co 7355  Vtxcvtx 28995  Edgcedg 29046  USPGraphcuspgr 29147   ClNeighbVtx cclnbgr 47980   GraphLocIso cgrlim 48138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-1o 8394  df-map 8761  df-vtx 28997  df-iedg 28998  df-edg 29047  df-uspgr 29149  df-clnbgr 47981  df-isubgr 48023  df-grim 48040  df-gric 48043  df-grlim 48140
This theorem is referenced by:  grlimedgclnbgr  48157  grlimgrtri  48165
  Copyright terms: Public domain W3C validator