| Step | Hyp | Ref
| Expression |
| 1 | | clnbgrvtxedg.n |
. . 3
⊢ 𝑁 = (𝐺 ClNeighbVtx 𝐴) |
| 2 | | clnbgrvtxedg.i |
. . 3
⊢ 𝐼 = (Edg‘𝐺) |
| 3 | | clnbgrvtxedg.k |
. . 3
⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} |
| 4 | | grlimedgclnbgr.m |
. . 3
⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝐴)) |
| 5 | | grlimedgclnbgr.j |
. . 3
⊢ 𝐽 = (Edg‘𝐻) |
| 6 | | grlimedgclnbgr.l |
. . 3
⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} |
| 7 | 1, 2, 3, 4, 5, 6 | grlimprclnbgr 47981 |
. 2
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ∃𝑓∃𝑔(𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} = (𝑔‘{𝐴, 𝐵}))) |
| 8 | | simpr1 1195 |
. . . . . 6
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} = (𝑔‘{𝐴, 𝐵}))) → 𝑓:𝑁–1-1-onto→𝑀) |
| 9 | | f1of 6768 |
. . . . . . . . . 10
⊢ (𝑔:𝐾–1-1-onto→𝐿 → 𝑔:𝐾⟶𝐿) |
| 10 | 9 | 3ad2ant2 1134 |
. . . . . . . . 9
⊢ ((𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} = (𝑔‘{𝐴, 𝐵})) → 𝑔:𝐾⟶𝐿) |
| 11 | 10 | adantl 481 |
. . . . . . . 8
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} = (𝑔‘{𝐴, 𝐵}))) → 𝑔:𝐾⟶𝐿) |
| 12 | | uspgruhgr 29147 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ USPGraph → 𝐺 ∈
UHGraph) |
| 13 | 12 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → 𝐺 ∈
UHGraph) |
| 14 | 13 | 3ad2ant1 1133 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → 𝐺 ∈ UHGraph) |
| 15 | | simp33 1212 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → {𝐴, 𝐵} ∈ 𝐼) |
| 16 | | prid1g 4714 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
| 17 | 16 | 3ad2ant1 1133 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼) → 𝐴 ∈ {𝐴, 𝐵}) |
| 18 | 17 | 3ad2ant3 1135 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → 𝐴 ∈ {𝐴, 𝐵}) |
| 19 | 14, 15, 18 | 3jca 1128 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → (𝐺 ∈ UHGraph ∧ {𝐴, 𝐵} ∈ 𝐼 ∧ 𝐴 ∈ {𝐴, 𝐵})) |
| 20 | 19 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} = (𝑔‘{𝐴, 𝐵}))) → (𝐺 ∈ UHGraph ∧ {𝐴, 𝐵} ∈ 𝐼 ∧ 𝐴 ∈ {𝐴, 𝐵})) |
| 21 | 1, 2, 3 | clnbgrvtxedg 47979 |
. . . . . . . . 9
⊢ ((𝐺 ∈ UHGraph ∧ {𝐴, 𝐵} ∈ 𝐼 ∧ 𝐴 ∈ {𝐴, 𝐵}) → {𝐴, 𝐵} ∈ 𝐾) |
| 22 | 20, 21 | syl 17 |
. . . . . . . 8
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} = (𝑔‘{𝐴, 𝐵}))) → {𝐴, 𝐵} ∈ 𝐾) |
| 23 | 11, 22 | ffvelcdmd 7023 |
. . . . . . 7
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} = (𝑔‘{𝐴, 𝐵}))) → (𝑔‘{𝐴, 𝐵}) ∈ 𝐿) |
| 24 | | eleq1 2816 |
. . . . . . . . 9
⊢ ({(𝑓‘𝐴), (𝑓‘𝐵)} = (𝑔‘{𝐴, 𝐵}) → ({(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿 ↔ (𝑔‘{𝐴, 𝐵}) ∈ 𝐿)) |
| 25 | 24 | 3ad2ant3 1135 |
. . . . . . . 8
⊢ ((𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} = (𝑔‘{𝐴, 𝐵})) → ({(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿 ↔ (𝑔‘{𝐴, 𝐵}) ∈ 𝐿)) |
| 26 | 25 | adantl 481 |
. . . . . . 7
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} = (𝑔‘{𝐴, 𝐵}))) → ({(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿 ↔ (𝑔‘{𝐴, 𝐵}) ∈ 𝐿)) |
| 27 | 23, 26 | mpbird 257 |
. . . . . 6
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} = (𝑔‘{𝐴, 𝐵}))) → {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿) |
| 28 | 8, 27 | jca 511 |
. . . . 5
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} = (𝑔‘{𝐴, 𝐵}))) → (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) |
| 29 | 28 | ex 412 |
. . . 4
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ((𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} = (𝑔‘{𝐴, 𝐵})) → (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿))) |
| 30 | 29 | exlimdv 1933 |
. . 3
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → (∃𝑔(𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} = (𝑔‘{𝐴, 𝐵})) → (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿))) |
| 31 | 30 | eximdv 1917 |
. 2
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → (∃𝑓∃𝑔(𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} = (𝑔‘{𝐴, 𝐵})) → ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿))) |
| 32 | 7, 31 | mpd 15 |
1
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) |