Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlimprclnbgrvtx Structured version   Visualization version   GIF version

Theorem grlimprclnbgrvtx 48123
Description: For two locally isomorphic graphs 𝐺 and 𝐻 and a vertex 𝐴 of 𝐺 there is a bijection 𝑓 mapping the closed neighborhood 𝑁 of 𝐴 onto the closed neighborhood 𝑀 of (𝐹𝐴), so that the mapped vertices of an edge {𝐴, 𝐵} containing the vertex 𝐴 is an edge between the vertices in 𝑀 containing the vertex (𝐹𝐴). (Contributed by AV, 28-Dec-2025.)
Hypotheses
Ref Expression
clnbgrvtxedg.n 𝑁 = (𝐺 ClNeighbVtx 𝐴)
clnbgrvtxedg.i 𝐼 = (Edg‘𝐺)
clnbgrvtxedg.k 𝐾 = {𝑥𝐼𝑥𝑁}
grlimedgclnbgr.m 𝑀 = (𝐻 ClNeighbVtx (𝐹𝐴))
grlimedgclnbgr.j 𝐽 = (Edg‘𝐻)
grlimedgclnbgr.l 𝐿 = {𝑥𝐽𝑥𝑀}
Assertion
Ref Expression
grlimprclnbgrvtx (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ({(𝐹𝐴), (𝑓𝐵)} ∈ 𝐿 ∨ {(𝐹𝐴), (𝑓𝐴)} ∈ 𝐿)))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑁   𝑥,𝐴,𝑓   𝑓,𝐹,𝑥   𝑓,𝐺,𝑥   𝑓,𝐻,𝑥   𝑓,𝐼   𝑥,𝐽   𝐵,𝑓,𝑥   𝑓,𝑉   𝑓,𝑊   𝑥,𝑀   𝑥,𝑓
Allowed substitution hints:   𝐽(𝑓)   𝐾(𝑥,𝑓)   𝐿(𝑥,𝑓)   𝑀(𝑓)   𝑁(𝑓)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem grlimprclnbgrvtx
StepHypRef Expression
1 clnbgrvtxedg.n . . 3 𝑁 = (𝐺 ClNeighbVtx 𝐴)
2 clnbgrvtxedg.i . . 3 𝐼 = (Edg‘𝐺)
3 clnbgrvtxedg.k . . 3 𝐾 = {𝑥𝐼𝑥𝑁}
4 grlimedgclnbgr.m . . 3 𝑀 = (𝐻 ClNeighbVtx (𝐹𝐴))
5 grlimedgclnbgr.j . . 3 𝐽 = (Edg‘𝐻)
6 grlimedgclnbgr.l . . 3 𝐿 = {𝑥𝐽𝑥𝑀}
71, 2, 3, 4, 5, 6grlimprclnbgredg 48121 . 2 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿))
8 simprl 770 . . . . 5 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) → 𝑓:𝑁1-1-onto𝑀)
9 sseq1 3956 . . . . . . . . . 10 (𝑥 = {(𝑓𝐴), (𝑓𝐵)} → (𝑥𝑀 ↔ {(𝑓𝐴), (𝑓𝐵)} ⊆ 𝑀))
109, 6elrab2 3646 . . . . . . . . 9 ({(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿 ↔ ({(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽 ∧ {(𝑓𝐴), (𝑓𝐵)} ⊆ 𝑀))
1110biimpi 216 . . . . . . . 8 ({(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿 → ({(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽 ∧ {(𝑓𝐴), (𝑓𝐵)} ⊆ 𝑀))
1211adantl 481 . . . . . . 7 ((𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿) → ({(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽 ∧ {(𝑓𝐴), (𝑓𝐵)} ⊆ 𝑀))
1312adantl 481 . . . . . 6 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) → ({(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽 ∧ {(𝑓𝐴), (𝑓𝐵)} ⊆ 𝑀))
14 fvex 6841 . . . . . . . . 9 (𝑓𝐴) ∈ V
15 fvex 6841 . . . . . . . . 9 (𝑓𝐵) ∈ V
1614, 15prss 4771 . . . . . . . 8 (((𝑓𝐴) ∈ 𝑀 ∧ (𝑓𝐵) ∈ 𝑀) ↔ {(𝑓𝐴), (𝑓𝐵)} ⊆ 𝑀)
17 uspgrupgr 29158 . . . . . . . . . . . . . . 15 (𝐻 ∈ USPGraph → 𝐻 ∈ UPGraph)
1817adantl 481 . . . . . . . . . . . . . 14 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → 𝐻 ∈ UPGraph)
19183ad2ant1 1133 . . . . . . . . . . . . 13 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → 𝐻 ∈ UPGraph)
2019ad2antrr 726 . . . . . . . . . . . 12 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽) → 𝐻 ∈ UPGraph)
214eleq2i 2825 . . . . . . . . . . . . . 14 ((𝑓𝐴) ∈ 𝑀 ↔ (𝑓𝐴) ∈ (𝐻 ClNeighbVtx (𝐹𝐴)))
225clnbupgreli 47959 . . . . . . . . . . . . . . 15 ((𝐻 ∈ UPGraph ∧ (𝑓𝐴) ∈ (𝐻 ClNeighbVtx (𝐹𝐴))) → ((𝑓𝐴) = (𝐹𝐴) ∨ {(𝑓𝐴), (𝐹𝐴)} ∈ 𝐽))
2322ex 412 . . . . . . . . . . . . . 14 (𝐻 ∈ UPGraph → ((𝑓𝐴) ∈ (𝐻 ClNeighbVtx (𝐹𝐴)) → ((𝑓𝐴) = (𝐹𝐴) ∨ {(𝑓𝐴), (𝐹𝐴)} ∈ 𝐽)))
2421, 23biimtrid 242 . . . . . . . . . . . . 13 (𝐻 ∈ UPGraph → ((𝑓𝐴) ∈ 𝑀 → ((𝑓𝐴) = (𝐹𝐴) ∨ {(𝑓𝐴), (𝐹𝐴)} ∈ 𝐽)))
254eleq2i 2825 . . . . . . . . . . . . . 14 ((𝑓𝐵) ∈ 𝑀 ↔ (𝑓𝐵) ∈ (𝐻 ClNeighbVtx (𝐹𝐴)))
265clnbupgreli 47959 . . . . . . . . . . . . . . 15 ((𝐻 ∈ UPGraph ∧ (𝑓𝐵) ∈ (𝐻 ClNeighbVtx (𝐹𝐴))) → ((𝑓𝐵) = (𝐹𝐴) ∨ {(𝑓𝐵), (𝐹𝐴)} ∈ 𝐽))
2726ex 412 . . . . . . . . . . . . . 14 (𝐻 ∈ UPGraph → ((𝑓𝐵) ∈ (𝐻 ClNeighbVtx (𝐹𝐴)) → ((𝑓𝐵) = (𝐹𝐴) ∨ {(𝑓𝐵), (𝐹𝐴)} ∈ 𝐽)))
2825, 27biimtrid 242 . . . . . . . . . . . . 13 (𝐻 ∈ UPGraph → ((𝑓𝐵) ∈ 𝑀 → ((𝑓𝐵) = (𝐹𝐴) ∨ {(𝑓𝐵), (𝐹𝐴)} ∈ 𝐽)))
2924, 28anim12d 609 . . . . . . . . . . . 12 (𝐻 ∈ UPGraph → (((𝑓𝐴) ∈ 𝑀 ∧ (𝑓𝐵) ∈ 𝑀) → (((𝑓𝐴) = (𝐹𝐴) ∨ {(𝑓𝐴), (𝐹𝐴)} ∈ 𝐽) ∧ ((𝑓𝐵) = (𝐹𝐴) ∨ {(𝑓𝐵), (𝐹𝐴)} ∈ 𝐽))))
3020, 29syl 17 . . . . . . . . . . 11 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽) → (((𝑓𝐴) ∈ 𝑀 ∧ (𝑓𝐵) ∈ 𝑀) → (((𝑓𝐴) = (𝐹𝐴) ∨ {(𝑓𝐴), (𝐹𝐴)} ∈ 𝐽) ∧ ((𝑓𝐵) = (𝐹𝐴) ∨ {(𝑓𝐵), (𝐹𝐴)} ∈ 𝐽))))
3130imp 406 . . . . . . . . . 10 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽) ∧ ((𝑓𝐴) ∈ 𝑀 ∧ (𝑓𝐵) ∈ 𝑀)) → (((𝑓𝐴) = (𝐹𝐴) ∨ {(𝑓𝐴), (𝐹𝐴)} ∈ 𝐽) ∧ ((𝑓𝐵) = (𝐹𝐴) ∨ {(𝑓𝐵), (𝐹𝐴)} ∈ 𝐽)))
32 prcom 4684 . . . . . . . . . . . . . . . . . . . . 21 {(𝑓𝐴), (𝑓𝐵)} = {(𝑓𝐵), (𝑓𝐴)}
33 preq1 4685 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓𝐵) = (𝐹𝐴) → {(𝑓𝐵), (𝑓𝐴)} = {(𝐹𝐴), (𝑓𝐴)})
3432, 33eqtrid 2780 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝐵) = (𝐹𝐴) → {(𝑓𝐴), (𝑓𝐵)} = {(𝐹𝐴), (𝑓𝐴)})
3534eleq1d 2818 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝐵) = (𝐹𝐴) → ({(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿 ↔ {(𝐹𝐴), (𝑓𝐴)} ∈ 𝐿))
3635biimpcd 249 . . . . . . . . . . . . . . . . . 18 ({(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿 → ((𝑓𝐵) = (𝐹𝐴) → {(𝐹𝐴), (𝑓𝐴)} ∈ 𝐿))
3736adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿) → ((𝑓𝐵) = (𝐹𝐴) → {(𝐹𝐴), (𝑓𝐴)} ∈ 𝐿))
3837adantl 481 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) → ((𝑓𝐵) = (𝐹𝐴) → {(𝐹𝐴), (𝑓𝐴)} ∈ 𝐿))
3938ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽) ∧ ((𝑓𝐴) ∈ 𝑀 ∧ (𝑓𝐵) ∈ 𝑀)) → ((𝑓𝐵) = (𝐹𝐴) → {(𝐹𝐴), (𝑓𝐴)} ∈ 𝐿))
40 prcom 4684 . . . . . . . . . . . . . . . . . . . 20 {(𝑓𝐵), (𝐹𝐴)} = {(𝐹𝐴), (𝑓𝐵)}
4140eleq1i 2824 . . . . . . . . . . . . . . . . . . 19 ({(𝑓𝐵), (𝐹𝐴)} ∈ 𝐽 ↔ {(𝐹𝐴), (𝑓𝐵)} ∈ 𝐽)
4241biimpi 216 . . . . . . . . . . . . . . . . . 18 ({(𝑓𝐵), (𝐹𝐴)} ∈ 𝐽 → {(𝐹𝐴), (𝑓𝐵)} ∈ 𝐽)
4342adantl 481 . . . . . . . . . . . . . . . . 17 (((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽) ∧ ((𝑓𝐴) ∈ 𝑀 ∧ (𝑓𝐵) ∈ 𝑀)) ∧ {(𝑓𝐵), (𝐹𝐴)} ∈ 𝐽) → {(𝐹𝐴), (𝑓𝐵)} ∈ 𝐽)
4420ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽) ∧ ((𝑓𝐴) ∈ 𝑀 ∧ (𝑓𝐵) ∈ 𝑀)) ∧ {(𝑓𝐵), (𝐹𝐴)} ∈ 𝐽) → 𝐻 ∈ UPGraph)
45 fvex 6841 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹𝐴) ∈ V
4615, 45pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝐵) ∈ V ∧ (𝐹𝐴) ∈ V)
4746a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽) ∧ ((𝑓𝐴) ∈ 𝑀 ∧ (𝑓𝐵) ∈ 𝑀)) ∧ {(𝑓𝐵), (𝐹𝐴)} ∈ 𝐽) → ((𝑓𝐵) ∈ V ∧ (𝐹𝐴) ∈ V))
48 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽) ∧ ((𝑓𝐴) ∈ 𝑀 ∧ (𝑓𝐵) ∈ 𝑀)) ∧ {(𝑓𝐵), (𝐹𝐴)} ∈ 𝐽) → {(𝑓𝐵), (𝐹𝐴)} ∈ 𝐽)
4944, 47, 483jca 1128 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽) ∧ ((𝑓𝐴) ∈ 𝑀 ∧ (𝑓𝐵) ∈ 𝑀)) ∧ {(𝑓𝐵), (𝐹𝐴)} ∈ 𝐽) → (𝐻 ∈ UPGraph ∧ ((𝑓𝐵) ∈ V ∧ (𝐹𝐴) ∈ V) ∧ {(𝑓𝐵), (𝐹𝐴)} ∈ 𝐽))
50 eqid 2733 . . . . . . . . . . . . . . . . . . . . 21 (Vtx‘𝐻) = (Vtx‘𝐻)
5150, 5upgrpredgv 29119 . . . . . . . . . . . . . . . . . . . 20 ((𝐻 ∈ UPGraph ∧ ((𝑓𝐵) ∈ V ∧ (𝐹𝐴) ∈ V) ∧ {(𝑓𝐵), (𝐹𝐴)} ∈ 𝐽) → ((𝑓𝐵) ∈ (Vtx‘𝐻) ∧ (𝐹𝐴) ∈ (Vtx‘𝐻)))
52 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝑓𝐵) ∈ (Vtx‘𝐻) ∧ (𝐹𝐴) ∈ (Vtx‘𝐻)) → (𝐹𝐴) ∈ (Vtx‘𝐻))
5349, 51, 523syl 18 . . . . . . . . . . . . . . . . . . 19 (((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽) ∧ ((𝑓𝐴) ∈ 𝑀 ∧ (𝑓𝐵) ∈ 𝑀)) ∧ {(𝑓𝐵), (𝐹𝐴)} ∈ 𝐽) → (𝐹𝐴) ∈ (Vtx‘𝐻))
5450clnbgrvtxel 47953 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝐴) ∈ (Vtx‘𝐻) → (𝐹𝐴) ∈ (𝐻 ClNeighbVtx (𝐹𝐴)))
554eleq2i 2825 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝐴) ∈ 𝑀 ↔ (𝐹𝐴) ∈ (𝐻 ClNeighbVtx (𝐹𝐴)))
5654, 55sylibr 234 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝐴) ∈ (Vtx‘𝐻) → (𝐹𝐴) ∈ 𝑀)
5753, 56syl 17 . . . . . . . . . . . . . . . . . 18 (((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽) ∧ ((𝑓𝐴) ∈ 𝑀 ∧ (𝑓𝐵) ∈ 𝑀)) ∧ {(𝑓𝐵), (𝐹𝐴)} ∈ 𝐽) → (𝐹𝐴) ∈ 𝑀)
58 simplrr 777 . . . . . . . . . . . . . . . . . 18 (((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽) ∧ ((𝑓𝐴) ∈ 𝑀 ∧ (𝑓𝐵) ∈ 𝑀)) ∧ {(𝑓𝐵), (𝐹𝐴)} ∈ 𝐽) → (𝑓𝐵) ∈ 𝑀)
5957, 58prssd 4773 . . . . . . . . . . . . . . . . 17 (((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽) ∧ ((𝑓𝐴) ∈ 𝑀 ∧ (𝑓𝐵) ∈ 𝑀)) ∧ {(𝑓𝐵), (𝐹𝐴)} ∈ 𝐽) → {(𝐹𝐴), (𝑓𝐵)} ⊆ 𝑀)
60 sseq1 3956 . . . . . . . . . . . . . . . . . 18 (𝑥 = {(𝐹𝐴), (𝑓𝐵)} → (𝑥𝑀 ↔ {(𝐹𝐴), (𝑓𝐵)} ⊆ 𝑀))
6160, 6elrab2 3646 . . . . . . . . . . . . . . . . 17 ({(𝐹𝐴), (𝑓𝐵)} ∈ 𝐿 ↔ ({(𝐹𝐴), (𝑓𝐵)} ∈ 𝐽 ∧ {(𝐹𝐴), (𝑓𝐵)} ⊆ 𝑀))
6243, 59, 61sylanbrc 583 . . . . . . . . . . . . . . . 16 (((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽) ∧ ((𝑓𝐴) ∈ 𝑀 ∧ (𝑓𝐵) ∈ 𝑀)) ∧ {(𝑓𝐵), (𝐹𝐴)} ∈ 𝐽) → {(𝐹𝐴), (𝑓𝐵)} ∈ 𝐿)
6362ex 412 . . . . . . . . . . . . . . 15 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽) ∧ ((𝑓𝐴) ∈ 𝑀 ∧ (𝑓𝐵) ∈ 𝑀)) → ({(𝑓𝐵), (𝐹𝐴)} ∈ 𝐽 → {(𝐹𝐴), (𝑓𝐵)} ∈ 𝐿))
6439, 63orim12d 966 . . . . . . . . . . . . . 14 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽) ∧ ((𝑓𝐴) ∈ 𝑀 ∧ (𝑓𝐵) ∈ 𝑀)) → (((𝑓𝐵) = (𝐹𝐴) ∨ {(𝑓𝐵), (𝐹𝐴)} ∈ 𝐽) → ({(𝐹𝐴), (𝑓𝐴)} ∈ 𝐿 ∨ {(𝐹𝐴), (𝑓𝐵)} ∈ 𝐿)))
6564imp 406 . . . . . . . . . . . . 13 (((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽) ∧ ((𝑓𝐴) ∈ 𝑀 ∧ (𝑓𝐵) ∈ 𝑀)) ∧ ((𝑓𝐵) = (𝐹𝐴) ∨ {(𝑓𝐵), (𝐹𝐴)} ∈ 𝐽)) → ({(𝐹𝐴), (𝑓𝐴)} ∈ 𝐿 ∨ {(𝐹𝐴), (𝑓𝐵)} ∈ 𝐿))
6665orcomd 871 . . . . . . . . . . . 12 (((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽) ∧ ((𝑓𝐴) ∈ 𝑀 ∧ (𝑓𝐵) ∈ 𝑀)) ∧ ((𝑓𝐵) = (𝐹𝐴) ∨ {(𝑓𝐵), (𝐹𝐴)} ∈ 𝐽)) → ({(𝐹𝐴), (𝑓𝐵)} ∈ 𝐿 ∨ {(𝐹𝐴), (𝑓𝐴)} ∈ 𝐿))
6766ex 412 . . . . . . . . . . 11 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽) ∧ ((𝑓𝐴) ∈ 𝑀 ∧ (𝑓𝐵) ∈ 𝑀)) → (((𝑓𝐵) = (𝐹𝐴) ∨ {(𝑓𝐵), (𝐹𝐴)} ∈ 𝐽) → ({(𝐹𝐴), (𝑓𝐵)} ∈ 𝐿 ∨ {(𝐹𝐴), (𝑓𝐴)} ∈ 𝐿)))
6867adantld 490 . . . . . . . . . 10 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽) ∧ ((𝑓𝐴) ∈ 𝑀 ∧ (𝑓𝐵) ∈ 𝑀)) → ((((𝑓𝐴) = (𝐹𝐴) ∨ {(𝑓𝐴), (𝐹𝐴)} ∈ 𝐽) ∧ ((𝑓𝐵) = (𝐹𝐴) ∨ {(𝑓𝐵), (𝐹𝐴)} ∈ 𝐽)) → ({(𝐹𝐴), (𝑓𝐵)} ∈ 𝐿 ∨ {(𝐹𝐴), (𝑓𝐴)} ∈ 𝐿)))
6931, 68mpd 15 . . . . . . . . 9 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽) ∧ ((𝑓𝐴) ∈ 𝑀 ∧ (𝑓𝐵) ∈ 𝑀)) → ({(𝐹𝐴), (𝑓𝐵)} ∈ 𝐿 ∨ {(𝐹𝐴), (𝑓𝐴)} ∈ 𝐿))
7069ex 412 . . . . . . . 8 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽) → (((𝑓𝐴) ∈ 𝑀 ∧ (𝑓𝐵) ∈ 𝑀) → ({(𝐹𝐴), (𝑓𝐵)} ∈ 𝐿 ∨ {(𝐹𝐴), (𝑓𝐴)} ∈ 𝐿)))
7116, 70biimtrrid 243 . . . . . . 7 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽) → ({(𝑓𝐴), (𝑓𝐵)} ⊆ 𝑀 → ({(𝐹𝐴), (𝑓𝐵)} ∈ 𝐿 ∨ {(𝐹𝐴), (𝑓𝐴)} ∈ 𝐿)))
7271expimpd 453 . . . . . 6 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) → (({(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽 ∧ {(𝑓𝐴), (𝑓𝐵)} ⊆ 𝑀) → ({(𝐹𝐴), (𝑓𝐵)} ∈ 𝐿 ∨ {(𝐹𝐴), (𝑓𝐴)} ∈ 𝐿)))
7313, 72mpd 15 . . . . 5 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) → ({(𝐹𝐴), (𝑓𝐵)} ∈ 𝐿 ∨ {(𝐹𝐴), (𝑓𝐴)} ∈ 𝐿))
748, 73jca 511 . . . 4 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿)) → (𝑓:𝑁1-1-onto𝑀 ∧ ({(𝐹𝐴), (𝑓𝐵)} ∈ 𝐿 ∨ {(𝐹𝐴), (𝑓𝐴)} ∈ 𝐿)))
7574ex 412 . . 3 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ((𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿) → (𝑓:𝑁1-1-onto𝑀 ∧ ({(𝐹𝐴), (𝑓𝐵)} ∈ 𝐿 ∨ {(𝐹𝐴), (𝑓𝐴)} ∈ 𝐿))))
7675eximdv 1918 . 2 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → (∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿) → ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ({(𝐹𝐴), (𝑓𝐵)} ∈ 𝐿 ∨ {(𝐹𝐴), (𝑓𝐴)} ∈ 𝐿))))
777, 76mpd 15 1 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ({(𝐹𝐴), (𝑓𝐵)} ∈ 𝐿 ∨ {(𝐹𝐴), (𝑓𝐴)} ∈ 𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wex 1780  wcel 2113  {crab 3396  Vcvv 3437  wss 3898  {cpr 4577  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  Vtxcvtx 28976  Edgcedg 29027  UPGraphcupgr 29060  USPGraphcuspgr 29128   ClNeighbVtx cclnbgr 47942   GraphLocIso cgrlim 48100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-n0 12389  df-xnn0 12462  df-z 12476  df-uz 12739  df-fz 13410  df-hash 14240  df-vtx 28978  df-iedg 28979  df-edg 29028  df-uhgr 29038  df-upgr 29062  df-uspgr 29130  df-nbgr 29313  df-clnbgr 47943  df-isubgr 47985  df-grim 48002  df-gric 48005  df-grlim 48102
This theorem is referenced by:  grlimgredgex  48124
  Copyright terms: Public domain W3C validator