Proof of Theorem grlimprclnbgrvtx
| Step | Hyp | Ref
| Expression |
| 1 | | clnbgrvtxedg.n |
. . 3
⊢ 𝑁 = (𝐺 ClNeighbVtx 𝐴) |
| 2 | | clnbgrvtxedg.i |
. . 3
⊢ 𝐼 = (Edg‘𝐺) |
| 3 | | clnbgrvtxedg.k |
. . 3
⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} |
| 4 | | grlimedgclnbgr.m |
. . 3
⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝐴)) |
| 5 | | grlimedgclnbgr.j |
. . 3
⊢ 𝐽 = (Edg‘𝐻) |
| 6 | | grlimedgclnbgr.l |
. . 3
⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} |
| 7 | 1, 2, 3, 4, 5, 6 | grlimprclnbgredg 47982 |
. 2
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) |
| 8 | | simprl 770 |
. . . . 5
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) → 𝑓:𝑁–1-1-onto→𝑀) |
| 9 | | sseq1 3963 |
. . . . . . . . . 10
⊢ (𝑥 = {(𝑓‘𝐴), (𝑓‘𝐵)} → (𝑥 ⊆ 𝑀 ↔ {(𝑓‘𝐴), (𝑓‘𝐵)} ⊆ 𝑀)) |
| 10 | 9, 6 | elrab2 3653 |
. . . . . . . . 9
⊢ ({(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿 ↔ ({(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ⊆ 𝑀)) |
| 11 | 10 | biimpi 216 |
. . . . . . . 8
⊢ ({(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿 → ({(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ⊆ 𝑀)) |
| 12 | 11 | adantl 481 |
. . . . . . 7
⊢ ((𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿) → ({(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ⊆ 𝑀)) |
| 13 | 12 | adantl 481 |
. . . . . 6
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) → ({(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ⊆ 𝑀)) |
| 14 | | fvex 6839 |
. . . . . . . . 9
⊢ (𝑓‘𝐴) ∈ V |
| 15 | | fvex 6839 |
. . . . . . . . 9
⊢ (𝑓‘𝐵) ∈ V |
| 16 | 14, 15 | prss 4774 |
. . . . . . . 8
⊢ (((𝑓‘𝐴) ∈ 𝑀 ∧ (𝑓‘𝐵) ∈ 𝑀) ↔ {(𝑓‘𝐴), (𝑓‘𝐵)} ⊆ 𝑀) |
| 17 | | uspgrupgr 29141 |
. . . . . . . . . . . . . . 15
⊢ (𝐻 ∈ USPGraph → 𝐻 ∈
UPGraph) |
| 18 | 17 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → 𝐻 ∈
UPGraph) |
| 19 | 18 | 3ad2ant1 1133 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → 𝐻 ∈ UPGraph) |
| 20 | 19 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹 ∈
(𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽) → 𝐻 ∈ UPGraph) |
| 21 | 4 | eleq2i 2820 |
. . . . . . . . . . . . . 14
⊢ ((𝑓‘𝐴) ∈ 𝑀 ↔ (𝑓‘𝐴) ∈ (𝐻 ClNeighbVtx (𝐹‘𝐴))) |
| 22 | 5 | clnbupgreli 47820 |
. . . . . . . . . . . . . . 15
⊢ ((𝐻 ∈ UPGraph ∧ (𝑓‘𝐴) ∈ (𝐻 ClNeighbVtx (𝐹‘𝐴))) → ((𝑓‘𝐴) = (𝐹‘𝐴) ∨ {(𝑓‘𝐴), (𝐹‘𝐴)} ∈ 𝐽)) |
| 23 | 22 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (𝐻 ∈ UPGraph → ((𝑓‘𝐴) ∈ (𝐻 ClNeighbVtx (𝐹‘𝐴)) → ((𝑓‘𝐴) = (𝐹‘𝐴) ∨ {(𝑓‘𝐴), (𝐹‘𝐴)} ∈ 𝐽))) |
| 24 | 21, 23 | biimtrid 242 |
. . . . . . . . . . . . 13
⊢ (𝐻 ∈ UPGraph → ((𝑓‘𝐴) ∈ 𝑀 → ((𝑓‘𝐴) = (𝐹‘𝐴) ∨ {(𝑓‘𝐴), (𝐹‘𝐴)} ∈ 𝐽))) |
| 25 | 4 | eleq2i 2820 |
. . . . . . . . . . . . . 14
⊢ ((𝑓‘𝐵) ∈ 𝑀 ↔ (𝑓‘𝐵) ∈ (𝐻 ClNeighbVtx (𝐹‘𝐴))) |
| 26 | 5 | clnbupgreli 47820 |
. . . . . . . . . . . . . . 15
⊢ ((𝐻 ∈ UPGraph ∧ (𝑓‘𝐵) ∈ (𝐻 ClNeighbVtx (𝐹‘𝐴))) → ((𝑓‘𝐵) = (𝐹‘𝐴) ∨ {(𝑓‘𝐵), (𝐹‘𝐴)} ∈ 𝐽)) |
| 27 | 26 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (𝐻 ∈ UPGraph → ((𝑓‘𝐵) ∈ (𝐻 ClNeighbVtx (𝐹‘𝐴)) → ((𝑓‘𝐵) = (𝐹‘𝐴) ∨ {(𝑓‘𝐵), (𝐹‘𝐴)} ∈ 𝐽))) |
| 28 | 25, 27 | biimtrid 242 |
. . . . . . . . . . . . 13
⊢ (𝐻 ∈ UPGraph → ((𝑓‘𝐵) ∈ 𝑀 → ((𝑓‘𝐵) = (𝐹‘𝐴) ∨ {(𝑓‘𝐵), (𝐹‘𝐴)} ∈ 𝐽))) |
| 29 | 24, 28 | anim12d 609 |
. . . . . . . . . . . 12
⊢ (𝐻 ∈ UPGraph → (((𝑓‘𝐴) ∈ 𝑀 ∧ (𝑓‘𝐵) ∈ 𝑀) → (((𝑓‘𝐴) = (𝐹‘𝐴) ∨ {(𝑓‘𝐴), (𝐹‘𝐴)} ∈ 𝐽) ∧ ((𝑓‘𝐵) = (𝐹‘𝐴) ∨ {(𝑓‘𝐵), (𝐹‘𝐴)} ∈ 𝐽)))) |
| 30 | 20, 29 | syl 17 |
. . . . . . . . . . 11
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹 ∈
(𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽) → (((𝑓‘𝐴) ∈ 𝑀 ∧ (𝑓‘𝐵) ∈ 𝑀) → (((𝑓‘𝐴) = (𝐹‘𝐴) ∨ {(𝑓‘𝐴), (𝐹‘𝐴)} ∈ 𝐽) ∧ ((𝑓‘𝐵) = (𝐹‘𝐴) ∨ {(𝑓‘𝐵), (𝐹‘𝐴)} ∈ 𝐽)))) |
| 31 | 30 | imp 406 |
. . . . . . . . . 10
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹 ∈
(𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽) ∧ ((𝑓‘𝐴) ∈ 𝑀 ∧ (𝑓‘𝐵) ∈ 𝑀)) → (((𝑓‘𝐴) = (𝐹‘𝐴) ∨ {(𝑓‘𝐴), (𝐹‘𝐴)} ∈ 𝐽) ∧ ((𝑓‘𝐵) = (𝐹‘𝐴) ∨ {(𝑓‘𝐵), (𝐹‘𝐴)} ∈ 𝐽))) |
| 32 | | prcom 4686 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {(𝑓‘𝐴), (𝑓‘𝐵)} = {(𝑓‘𝐵), (𝑓‘𝐴)} |
| 33 | | preq1 4687 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓‘𝐵) = (𝐹‘𝐴) → {(𝑓‘𝐵), (𝑓‘𝐴)} = {(𝐹‘𝐴), (𝑓‘𝐴)}) |
| 34 | 32, 33 | eqtrid 2776 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓‘𝐵) = (𝐹‘𝐴) → {(𝑓‘𝐴), (𝑓‘𝐵)} = {(𝐹‘𝐴), (𝑓‘𝐴)}) |
| 35 | 34 | eleq1d 2813 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓‘𝐵) = (𝐹‘𝐴) → ({(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿 ↔ {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ 𝐿)) |
| 36 | 35 | biimpcd 249 |
. . . . . . . . . . . . . . . . . 18
⊢ ({(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿 → ((𝑓‘𝐵) = (𝐹‘𝐴) → {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ 𝐿)) |
| 37 | 36 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿) → ((𝑓‘𝐵) = (𝐹‘𝐴) → {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ 𝐿)) |
| 38 | 37 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) → ((𝑓‘𝐵) = (𝐹‘𝐴) → {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ 𝐿)) |
| 39 | 38 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹 ∈
(𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽) ∧ ((𝑓‘𝐴) ∈ 𝑀 ∧ (𝑓‘𝐵) ∈ 𝑀)) → ((𝑓‘𝐵) = (𝐹‘𝐴) → {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ 𝐿)) |
| 40 | | prcom 4686 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {(𝑓‘𝐵), (𝐹‘𝐴)} = {(𝐹‘𝐴), (𝑓‘𝐵)} |
| 41 | 40 | eleq1i 2819 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({(𝑓‘𝐵), (𝐹‘𝐴)} ∈ 𝐽 ↔ {(𝐹‘𝐴), (𝑓‘𝐵)} ∈ 𝐽) |
| 42 | 41 | biimpi 216 |
. . . . . . . . . . . . . . . . . 18
⊢ ({(𝑓‘𝐵), (𝐹‘𝐴)} ∈ 𝐽 → {(𝐹‘𝐴), (𝑓‘𝐵)} ∈ 𝐽) |
| 43 | 42 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹 ∈
(𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽) ∧ ((𝑓‘𝐴) ∈ 𝑀 ∧ (𝑓‘𝐵) ∈ 𝑀)) ∧ {(𝑓‘𝐵), (𝐹‘𝐴)} ∈ 𝐽) → {(𝐹‘𝐴), (𝑓‘𝐵)} ∈ 𝐽) |
| 44 | 20 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹 ∈
(𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽) ∧ ((𝑓‘𝐴) ∈ 𝑀 ∧ (𝑓‘𝐵) ∈ 𝑀)) ∧ {(𝑓‘𝐵), (𝐹‘𝐴)} ∈ 𝐽) → 𝐻 ∈ UPGraph) |
| 45 | | fvex 6839 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹‘𝐴) ∈ V |
| 46 | 15, 45 | pm3.2i 470 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓‘𝐵) ∈ V ∧ (𝐹‘𝐴) ∈ V) |
| 47 | 46 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹 ∈
(𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽) ∧ ((𝑓‘𝐴) ∈ 𝑀 ∧ (𝑓‘𝐵) ∈ 𝑀)) ∧ {(𝑓‘𝐵), (𝐹‘𝐴)} ∈ 𝐽) → ((𝑓‘𝐵) ∈ V ∧ (𝐹‘𝐴) ∈ V)) |
| 48 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹 ∈
(𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽) ∧ ((𝑓‘𝐴) ∈ 𝑀 ∧ (𝑓‘𝐵) ∈ 𝑀)) ∧ {(𝑓‘𝐵), (𝐹‘𝐴)} ∈ 𝐽) → {(𝑓‘𝐵), (𝐹‘𝐴)} ∈ 𝐽) |
| 49 | 44, 47, 48 | 3jca 1128 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹 ∈
(𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽) ∧ ((𝑓‘𝐴) ∈ 𝑀 ∧ (𝑓‘𝐵) ∈ 𝑀)) ∧ {(𝑓‘𝐵), (𝐹‘𝐴)} ∈ 𝐽) → (𝐻 ∈ UPGraph ∧ ((𝑓‘𝐵) ∈ V ∧ (𝐹‘𝐴) ∈ V) ∧ {(𝑓‘𝐵), (𝐹‘𝐴)} ∈ 𝐽)) |
| 50 | | eqid 2729 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(Vtx‘𝐻) =
(Vtx‘𝐻) |
| 51 | 50, 5 | upgrpredgv 29102 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐻 ∈ UPGraph ∧ ((𝑓‘𝐵) ∈ V ∧ (𝐹‘𝐴) ∈ V) ∧ {(𝑓‘𝐵), (𝐹‘𝐴)} ∈ 𝐽) → ((𝑓‘𝐵) ∈ (Vtx‘𝐻) ∧ (𝐹‘𝐴) ∈ (Vtx‘𝐻))) |
| 52 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓‘𝐵) ∈ (Vtx‘𝐻) ∧ (𝐹‘𝐴) ∈ (Vtx‘𝐻)) → (𝐹‘𝐴) ∈ (Vtx‘𝐻)) |
| 53 | 49, 51, 52 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹 ∈
(𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽) ∧ ((𝑓‘𝐴) ∈ 𝑀 ∧ (𝑓‘𝐵) ∈ 𝑀)) ∧ {(𝑓‘𝐵), (𝐹‘𝐴)} ∈ 𝐽) → (𝐹‘𝐴) ∈ (Vtx‘𝐻)) |
| 54 | 50 | clnbgrvtxel 47814 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹‘𝐴) ∈ (Vtx‘𝐻) → (𝐹‘𝐴) ∈ (𝐻 ClNeighbVtx (𝐹‘𝐴))) |
| 55 | 4 | eleq2i 2820 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹‘𝐴) ∈ 𝑀 ↔ (𝐹‘𝐴) ∈ (𝐻 ClNeighbVtx (𝐹‘𝐴))) |
| 56 | 54, 55 | sylibr 234 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘𝐴) ∈ (Vtx‘𝐻) → (𝐹‘𝐴) ∈ 𝑀) |
| 57 | 53, 56 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹 ∈
(𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽) ∧ ((𝑓‘𝐴) ∈ 𝑀 ∧ (𝑓‘𝐵) ∈ 𝑀)) ∧ {(𝑓‘𝐵), (𝐹‘𝐴)} ∈ 𝐽) → (𝐹‘𝐴) ∈ 𝑀) |
| 58 | | simplrr 777 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹 ∈
(𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽) ∧ ((𝑓‘𝐴) ∈ 𝑀 ∧ (𝑓‘𝐵) ∈ 𝑀)) ∧ {(𝑓‘𝐵), (𝐹‘𝐴)} ∈ 𝐽) → (𝑓‘𝐵) ∈ 𝑀) |
| 59 | 57, 58 | prssd 4776 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹 ∈
(𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽) ∧ ((𝑓‘𝐴) ∈ 𝑀 ∧ (𝑓‘𝐵) ∈ 𝑀)) ∧ {(𝑓‘𝐵), (𝐹‘𝐴)} ∈ 𝐽) → {(𝐹‘𝐴), (𝑓‘𝐵)} ⊆ 𝑀) |
| 60 | | sseq1 3963 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = {(𝐹‘𝐴), (𝑓‘𝐵)} → (𝑥 ⊆ 𝑀 ↔ {(𝐹‘𝐴), (𝑓‘𝐵)} ⊆ 𝑀)) |
| 61 | 60, 6 | elrab2 3653 |
. . . . . . . . . . . . . . . . 17
⊢ ({(𝐹‘𝐴), (𝑓‘𝐵)} ∈ 𝐿 ↔ ({(𝐹‘𝐴), (𝑓‘𝐵)} ∈ 𝐽 ∧ {(𝐹‘𝐴), (𝑓‘𝐵)} ⊆ 𝑀)) |
| 62 | 43, 59, 61 | sylanbrc 583 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹 ∈
(𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽) ∧ ((𝑓‘𝐴) ∈ 𝑀 ∧ (𝑓‘𝐵) ∈ 𝑀)) ∧ {(𝑓‘𝐵), (𝐹‘𝐴)} ∈ 𝐽) → {(𝐹‘𝐴), (𝑓‘𝐵)} ∈ 𝐿) |
| 63 | 62 | ex 412 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹 ∈
(𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽) ∧ ((𝑓‘𝐴) ∈ 𝑀 ∧ (𝑓‘𝐵) ∈ 𝑀)) → ({(𝑓‘𝐵), (𝐹‘𝐴)} ∈ 𝐽 → {(𝐹‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) |
| 64 | 39, 63 | orim12d 966 |
. . . . . . . . . . . . . 14
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹 ∈
(𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽) ∧ ((𝑓‘𝐴) ∈ 𝑀 ∧ (𝑓‘𝐵) ∈ 𝑀)) → (((𝑓‘𝐵) = (𝐹‘𝐴) ∨ {(𝑓‘𝐵), (𝐹‘𝐴)} ∈ 𝐽) → ({(𝐹‘𝐴), (𝑓‘𝐴)} ∈ 𝐿 ∨ {(𝐹‘𝐴), (𝑓‘𝐵)} ∈ 𝐿))) |
| 65 | 64 | imp 406 |
. . . . . . . . . . . . 13
⊢
(((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹 ∈
(𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽) ∧ ((𝑓‘𝐴) ∈ 𝑀 ∧ (𝑓‘𝐵) ∈ 𝑀)) ∧ ((𝑓‘𝐵) = (𝐹‘𝐴) ∨ {(𝑓‘𝐵), (𝐹‘𝐴)} ∈ 𝐽)) → ({(𝐹‘𝐴), (𝑓‘𝐴)} ∈ 𝐿 ∨ {(𝐹‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) |
| 66 | 65 | orcomd 871 |
. . . . . . . . . . . 12
⊢
(((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹 ∈
(𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽) ∧ ((𝑓‘𝐴) ∈ 𝑀 ∧ (𝑓‘𝐵) ∈ 𝑀)) ∧ ((𝑓‘𝐵) = (𝐹‘𝐴) ∨ {(𝑓‘𝐵), (𝐹‘𝐴)} ∈ 𝐽)) → ({(𝐹‘𝐴), (𝑓‘𝐵)} ∈ 𝐿 ∨ {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ 𝐿)) |
| 67 | 66 | ex 412 |
. . . . . . . . . . 11
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹 ∈
(𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽) ∧ ((𝑓‘𝐴) ∈ 𝑀 ∧ (𝑓‘𝐵) ∈ 𝑀)) → (((𝑓‘𝐵) = (𝐹‘𝐴) ∨ {(𝑓‘𝐵), (𝐹‘𝐴)} ∈ 𝐽) → ({(𝐹‘𝐴), (𝑓‘𝐵)} ∈ 𝐿 ∨ {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ 𝐿))) |
| 68 | 67 | adantld 490 |
. . . . . . . . . 10
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹 ∈
(𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽) ∧ ((𝑓‘𝐴) ∈ 𝑀 ∧ (𝑓‘𝐵) ∈ 𝑀)) → ((((𝑓‘𝐴) = (𝐹‘𝐴) ∨ {(𝑓‘𝐴), (𝐹‘𝐴)} ∈ 𝐽) ∧ ((𝑓‘𝐵) = (𝐹‘𝐴) ∨ {(𝑓‘𝐵), (𝐹‘𝐴)} ∈ 𝐽)) → ({(𝐹‘𝐴), (𝑓‘𝐵)} ∈ 𝐿 ∨ {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ 𝐿))) |
| 69 | 31, 68 | mpd 15 |
. . . . . . . . 9
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹 ∈
(𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽) ∧ ((𝑓‘𝐴) ∈ 𝑀 ∧ (𝑓‘𝐵) ∈ 𝑀)) → ({(𝐹‘𝐴), (𝑓‘𝐵)} ∈ 𝐿 ∨ {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ 𝐿)) |
| 70 | 69 | ex 412 |
. . . . . . . 8
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹 ∈
(𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽) → (((𝑓‘𝐴) ∈ 𝑀 ∧ (𝑓‘𝐵) ∈ 𝑀) → ({(𝐹‘𝐴), (𝑓‘𝐵)} ∈ 𝐿 ∨ {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ 𝐿))) |
| 71 | 16, 70 | biimtrrid 243 |
. . . . . . 7
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹 ∈
(𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽) → ({(𝑓‘𝐴), (𝑓‘𝐵)} ⊆ 𝑀 → ({(𝐹‘𝐴), (𝑓‘𝐵)} ∈ 𝐿 ∨ {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ 𝐿))) |
| 72 | 71 | expimpd 453 |
. . . . . 6
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) → (({(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ⊆ 𝑀) → ({(𝐹‘𝐴), (𝑓‘𝐵)} ∈ 𝐿 ∨ {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ 𝐿))) |
| 73 | 13, 72 | mpd 15 |
. . . . 5
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) → ({(𝐹‘𝐴), (𝑓‘𝐵)} ∈ 𝐿 ∨ {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ 𝐿)) |
| 74 | 8, 73 | jca 511 |
. . . 4
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) → (𝑓:𝑁–1-1-onto→𝑀 ∧ ({(𝐹‘𝐴), (𝑓‘𝐵)} ∈ 𝐿 ∨ {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ 𝐿))) |
| 75 | 74 | ex 412 |
. . 3
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ((𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿) → (𝑓:𝑁–1-1-onto→𝑀 ∧ ({(𝐹‘𝐴), (𝑓‘𝐵)} ∈ 𝐿 ∨ {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ 𝐿)))) |
| 76 | 75 | eximdv 1917 |
. 2
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → (∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿) → ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ({(𝐹‘𝐴), (𝑓‘𝐵)} ∈ 𝐿 ∨ {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ 𝐿)))) |
| 77 | 7, 76 | mpd 15 |
1
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ({(𝐹‘𝐴), (𝑓‘𝐵)} ∈ 𝐿 ∨ {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ 𝐿))) |