Proof of Theorem grlimprclnbgr
| Step | Hyp | Ref
| Expression |
| 1 | | simp3 1138 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼) → {𝐴, 𝐵} ∈ 𝐼) |
| 2 | | prid1g 4714 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
| 3 | 2 | 3ad2ant1 1133 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼) → 𝐴 ∈ {𝐴, 𝐵}) |
| 4 | 1, 3 | jca 511 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼) → ({𝐴, 𝐵} ∈ 𝐼 ∧ 𝐴 ∈ {𝐴, 𝐵})) |
| 5 | | clnbgrvtxedg.n |
. . . 4
⊢ 𝑁 = (𝐺 ClNeighbVtx 𝐴) |
| 6 | | clnbgrvtxedg.i |
. . . 4
⊢ 𝐼 = (Edg‘𝐺) |
| 7 | | clnbgrvtxedg.k |
. . . 4
⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} |
| 8 | | grlimedgclnbgr.m |
. . . 4
⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝐴)) |
| 9 | | grlimedgclnbgr.j |
. . . 4
⊢ 𝐽 = (Edg‘𝐻) |
| 10 | | grlimedgclnbgr.l |
. . . 4
⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} |
| 11 | 5, 6, 7, 8, 9, 10 | grlimedgclnbgr 47980 |
. . 3
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ ({𝐴, 𝐵} ∈ 𝐼 ∧ 𝐴 ∈ {𝐴, 𝐵})) → ∃𝑓∃𝑔(𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ (𝑓 “ {𝐴, 𝐵}) = (𝑔‘{𝐴, 𝐵}))) |
| 12 | 4, 11 | syl3an3 1165 |
. 2
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ∃𝑓∃𝑔(𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ (𝑓 “ {𝐴, 𝐵}) = (𝑔‘{𝐴, 𝐵}))) |
| 13 | | simpr1 1195 |
. . . . 5
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ (𝑓 “ {𝐴, 𝐵}) = (𝑔‘{𝐴, 𝐵}))) → 𝑓:𝑁–1-1-onto→𝑀) |
| 14 | | simpr2 1196 |
. . . . 5
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ (𝑓 “ {𝐴, 𝐵}) = (𝑔‘{𝐴, 𝐵}))) → 𝑔:𝐾–1-1-onto→𝐿) |
| 15 | | f1ofn 6769 |
. . . . . . . . . . . 12
⊢ (𝑓:𝑁–1-1-onto→𝑀 → 𝑓 Fn 𝑁) |
| 16 | 15 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁–1-1-onto→𝑀) → 𝑓 Fn 𝑁) |
| 17 | | uspgruhgr 29147 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 ∈ USPGraph → 𝐺 ∈
UHGraph) |
| 18 | 17 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → 𝐺 ∈
UHGraph) |
| 19 | 18 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → 𝐺 ∈ UHGraph) |
| 20 | 6 | eleq2i 2820 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝐴, 𝐵} ∈ 𝐼 ↔ {𝐴, 𝐵} ∈ (Edg‘𝐺)) |
| 21 | 20 | biimpi 216 |
. . . . . . . . . . . . . . . . 17
⊢ ({𝐴, 𝐵} ∈ 𝐼 → {𝐴, 𝐵} ∈ (Edg‘𝐺)) |
| 22 | 21 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼) → {𝐴, 𝐵} ∈ (Edg‘𝐺)) |
| 23 | 22 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → {𝐴, 𝐵} ∈ (Edg‘𝐺)) |
| 24 | 3 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → 𝐴 ∈ {𝐴, 𝐵}) |
| 25 | | uhgredgrnv 29093 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ UHGraph ∧ {𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ 𝐴 ∈ {𝐴, 𝐵}) → 𝐴 ∈ (Vtx‘𝐺)) |
| 26 | 19, 23, 24, 25 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → 𝐴 ∈ (Vtx‘𝐺)) |
| 27 | 26 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁–1-1-onto→𝑀) → 𝐴 ∈ (Vtx‘𝐺)) |
| 28 | | eqid 2729 |
. . . . . . . . . . . . . 14
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 29 | 28 | clnbgrvtxel 47814 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ (Vtx‘𝐺) → 𝐴 ∈ (𝐺 ClNeighbVtx 𝐴)) |
| 30 | 27, 29 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁–1-1-onto→𝑀) → 𝐴 ∈ (𝐺 ClNeighbVtx 𝐴)) |
| 31 | 30, 5 | eleqtrrdi 2839 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁–1-1-onto→𝑀) → 𝐴 ∈ 𝑁) |
| 32 | | prcom 4686 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝐴, 𝐵} = {𝐵, 𝐴} |
| 33 | 32 | eleq1i 2819 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝐴, 𝐵} ∈ 𝐼 ↔ {𝐵, 𝐴} ∈ 𝐼) |
| 34 | 33 | biimpi 216 |
. . . . . . . . . . . . . . . . 17
⊢ ({𝐴, 𝐵} ∈ 𝐼 → {𝐵, 𝐴} ∈ 𝐼) |
| 35 | 34 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼) → {𝐵, 𝐴} ∈ 𝐼) |
| 36 | 35 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → {𝐵, 𝐴} ∈ 𝐼) |
| 37 | 36 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁–1-1-onto→𝑀) → {𝐵, 𝐴} ∈ 𝐼) |
| 38 | 37 | olcd 874 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁–1-1-onto→𝑀) → (𝐵 = 𝐴 ∨ {𝐵, 𝐴} ∈ 𝐼)) |
| 39 | | uspgrupgr 29141 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺 ∈ USPGraph → 𝐺 ∈
UPGraph) |
| 40 | 39 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → 𝐺 ∈
UPGraph) |
| 41 | 40 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → 𝐺 ∈ UPGraph) |
| 42 | | prid2g 4715 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ {𝐴, 𝐵}) |
| 43 | 42 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼) → 𝐵 ∈ {𝐴, 𝐵}) |
| 44 | 43 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → 𝐵 ∈ {𝐴, 𝐵}) |
| 45 | | uhgredgrnv 29093 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ UHGraph ∧ {𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ 𝐵 ∈ {𝐴, 𝐵}) → 𝐵 ∈ (Vtx‘𝐺)) |
| 46 | 19, 23, 44, 45 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → 𝐵 ∈ (Vtx‘𝐺)) |
| 47 | 41, 26, 46 | 3jca 1128 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → (𝐺 ∈ UPGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) |
| 48 | 47 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁–1-1-onto→𝑀) → (𝐺 ∈ UPGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) |
| 49 | 28, 6 | clnbupgrel 47819 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (𝐵 ∈ (𝐺 ClNeighbVtx 𝐴) ↔ (𝐵 = 𝐴 ∨ {𝐵, 𝐴} ∈ 𝐼))) |
| 50 | 48, 49 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁–1-1-onto→𝑀) → (𝐵 ∈ (𝐺 ClNeighbVtx 𝐴) ↔ (𝐵 = 𝐴 ∨ {𝐵, 𝐴} ∈ 𝐼))) |
| 51 | 38, 50 | mpbird 257 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁–1-1-onto→𝑀) → 𝐵 ∈ (𝐺 ClNeighbVtx 𝐴)) |
| 52 | 51, 5 | eleqtrrdi 2839 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁–1-1-onto→𝑀) → 𝐵 ∈ 𝑁) |
| 53 | | fnimapr 6910 |
. . . . . . . . . . 11
⊢ ((𝑓 Fn 𝑁 ∧ 𝐴 ∈ 𝑁 ∧ 𝐵 ∈ 𝑁) → (𝑓 “ {𝐴, 𝐵}) = {(𝑓‘𝐴), (𝑓‘𝐵)}) |
| 54 | 16, 31, 52, 53 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁–1-1-onto→𝑀) → (𝑓 “ {𝐴, 𝐵}) = {(𝑓‘𝐴), (𝑓‘𝐵)}) |
| 55 | 54 | eqeq1d 2731 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁–1-1-onto→𝑀) → ((𝑓 “ {𝐴, 𝐵}) = (𝑔‘{𝐴, 𝐵}) ↔ {(𝑓‘𝐴), (𝑓‘𝐵)} = (𝑔‘{𝐴, 𝐵}))) |
| 56 | 55 | biimpd 229 |
. . . . . . . 8
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁–1-1-onto→𝑀) → ((𝑓 “ {𝐴, 𝐵}) = (𝑔‘{𝐴, 𝐵}) → {(𝑓‘𝐴), (𝑓‘𝐵)} = (𝑔‘{𝐴, 𝐵}))) |
| 57 | 56 | a1d 25 |
. . . . . . 7
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁–1-1-onto→𝑀) → (𝑔:𝐾–1-1-onto→𝐿 → ((𝑓 “ {𝐴, 𝐵}) = (𝑔‘{𝐴, 𝐵}) → {(𝑓‘𝐴), (𝑓‘𝐵)} = (𝑔‘{𝐴, 𝐵})))) |
| 58 | 57 | ex 412 |
. . . . . 6
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → (𝑓:𝑁–1-1-onto→𝑀 → (𝑔:𝐾–1-1-onto→𝐿 → ((𝑓 “ {𝐴, 𝐵}) = (𝑔‘{𝐴, 𝐵}) → {(𝑓‘𝐴), (𝑓‘𝐵)} = (𝑔‘{𝐴, 𝐵}))))) |
| 59 | 58 | 3imp2 1350 |
. . . . 5
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ (𝑓 “ {𝐴, 𝐵}) = (𝑔‘{𝐴, 𝐵}))) → {(𝑓‘𝐴), (𝑓‘𝐵)} = (𝑔‘{𝐴, 𝐵})) |
| 60 | 13, 14, 59 | 3jca 1128 |
. . . 4
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ (𝑓 “ {𝐴, 𝐵}) = (𝑔‘{𝐴, 𝐵}))) → (𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} = (𝑔‘{𝐴, 𝐵}))) |
| 61 | 60 | ex 412 |
. . 3
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ((𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ (𝑓 “ {𝐴, 𝐵}) = (𝑔‘{𝐴, 𝐵})) → (𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} = (𝑔‘{𝐴, 𝐵})))) |
| 62 | 61 | 2eximdv 1919 |
. 2
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → (∃𝑓∃𝑔(𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ (𝑓 “ {𝐴, 𝐵}) = (𝑔‘{𝐴, 𝐵})) → ∃𝑓∃𝑔(𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} = (𝑔‘{𝐴, 𝐵})))) |
| 63 | 12, 62 | mpd 15 |
1
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ∃𝑓∃𝑔(𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} = (𝑔‘{𝐴, 𝐵}))) |