Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlimprclnbgr Structured version   Visualization version   GIF version

Theorem grlimprclnbgr 47981
Description: For two locally isomorphic graphs 𝐺 and 𝐻 and a vertex 𝐴 of 𝐺 there are two bijections 𝑓 and 𝑔 mapping the closed neighborhood 𝑁 of 𝐴 onto the closed neighborhood 𝑀 of (𝐹𝐴) and the edges between the vertices in 𝑁 onto the edges between the vertices in 𝑀, so that the mapped vertices of an edge {𝐴, 𝐵} containing the vertex 𝐴 is an edge between the vertices in 𝑀. (Contributed by AV, 25-Dec-2025.)
Hypotheses
Ref Expression
clnbgrvtxedg.n 𝑁 = (𝐺 ClNeighbVtx 𝐴)
clnbgrvtxedg.i 𝐼 = (Edg‘𝐺)
clnbgrvtxedg.k 𝐾 = {𝑥𝐼𝑥𝑁}
grlimedgclnbgr.m 𝑀 = (𝐻 ClNeighbVtx (𝐹𝐴))
grlimedgclnbgr.j 𝐽 = (Edg‘𝐻)
grlimedgclnbgr.l 𝐿 = {𝑥𝐽𝑥𝑀}
Assertion
Ref Expression
grlimprclnbgr (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ∃𝑓𝑔(𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿 ∧ {(𝑓𝐴), (𝑓𝐵)} = (𝑔‘{𝐴, 𝐵})))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑁   𝐴,𝑔,𝑥   𝐴,𝑓,𝑔   𝑔,𝐹,𝑓   𝑥,𝐹   𝑓,𝐺,𝑔   𝑥,𝐺   𝑓,𝐻,𝑔   𝑥,𝐻   𝑔,𝐼,𝑓   𝑔,𝐽,𝑥   𝐵,𝑓,𝑔   𝑥,𝐵   𝑓,𝑉,𝑔   𝑓,𝑊,𝑔
Allowed substitution hints:   𝐽(𝑓)   𝐾(𝑥,𝑓,𝑔)   𝐿(𝑥,𝑓,𝑔)   𝑀(𝑥,𝑓,𝑔)   𝑁(𝑓,𝑔)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem grlimprclnbgr
StepHypRef Expression
1 simp3 1138 . . . 4 ((𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼) → {𝐴, 𝐵} ∈ 𝐼)
2 prid1g 4714 . . . . 5 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
323ad2ant1 1133 . . . 4 ((𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼) → 𝐴 ∈ {𝐴, 𝐵})
41, 3jca 511 . . 3 ((𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼) → ({𝐴, 𝐵} ∈ 𝐼𝐴 ∈ {𝐴, 𝐵}))
5 clnbgrvtxedg.n . . . 4 𝑁 = (𝐺 ClNeighbVtx 𝐴)
6 clnbgrvtxedg.i . . . 4 𝐼 = (Edg‘𝐺)
7 clnbgrvtxedg.k . . . 4 𝐾 = {𝑥𝐼𝑥𝑁}
8 grlimedgclnbgr.m . . . 4 𝑀 = (𝐻 ClNeighbVtx (𝐹𝐴))
9 grlimedgclnbgr.j . . . 4 𝐽 = (Edg‘𝐻)
10 grlimedgclnbgr.l . . . 4 𝐿 = {𝑥𝐽𝑥𝑀}
115, 6, 7, 8, 9, 10grlimedgclnbgr 47980 . . 3 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ ({𝐴, 𝐵} ∈ 𝐼𝐴 ∈ {𝐴, 𝐵})) → ∃𝑓𝑔(𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿 ∧ (𝑓 “ {𝐴, 𝐵}) = (𝑔‘{𝐴, 𝐵})))
124, 11syl3an3 1165 . 2 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ∃𝑓𝑔(𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿 ∧ (𝑓 “ {𝐴, 𝐵}) = (𝑔‘{𝐴, 𝐵})))
13 simpr1 1195 . . . . 5 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿 ∧ (𝑓 “ {𝐴, 𝐵}) = (𝑔‘{𝐴, 𝐵}))) → 𝑓:𝑁1-1-onto𝑀)
14 simpr2 1196 . . . . 5 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿 ∧ (𝑓 “ {𝐴, 𝐵}) = (𝑔‘{𝐴, 𝐵}))) → 𝑔:𝐾1-1-onto𝐿)
15 f1ofn 6769 . . . . . . . . . . . 12 (𝑓:𝑁1-1-onto𝑀𝑓 Fn 𝑁)
1615adantl 481 . . . . . . . . . . 11 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁1-1-onto𝑀) → 𝑓 Fn 𝑁)
17 uspgruhgr 29147 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph)
1817adantr 480 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → 𝐺 ∈ UHGraph)
19183ad2ant1 1133 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → 𝐺 ∈ UHGraph)
206eleq2i 2820 . . . . . . . . . . . . . . . . . 18 ({𝐴, 𝐵} ∈ 𝐼 ↔ {𝐴, 𝐵} ∈ (Edg‘𝐺))
2120biimpi 216 . . . . . . . . . . . . . . . . 17 ({𝐴, 𝐵} ∈ 𝐼 → {𝐴, 𝐵} ∈ (Edg‘𝐺))
22213ad2ant3 1135 . . . . . . . . . . . . . . . 16 ((𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼) → {𝐴, 𝐵} ∈ (Edg‘𝐺))
23223ad2ant3 1135 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → {𝐴, 𝐵} ∈ (Edg‘𝐺))
2433ad2ant3 1135 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → 𝐴 ∈ {𝐴, 𝐵})
25 uhgredgrnv 29093 . . . . . . . . . . . . . . 15 ((𝐺 ∈ UHGraph ∧ {𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ 𝐴 ∈ {𝐴, 𝐵}) → 𝐴 ∈ (Vtx‘𝐺))
2619, 23, 24, 25syl3anc 1373 . . . . . . . . . . . . . 14 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → 𝐴 ∈ (Vtx‘𝐺))
2726adantr 480 . . . . . . . . . . . . 13 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁1-1-onto𝑀) → 𝐴 ∈ (Vtx‘𝐺))
28 eqid 2729 . . . . . . . . . . . . . 14 (Vtx‘𝐺) = (Vtx‘𝐺)
2928clnbgrvtxel 47814 . . . . . . . . . . . . 13 (𝐴 ∈ (Vtx‘𝐺) → 𝐴 ∈ (𝐺 ClNeighbVtx 𝐴))
3027, 29syl 17 . . . . . . . . . . . 12 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁1-1-onto𝑀) → 𝐴 ∈ (𝐺 ClNeighbVtx 𝐴))
3130, 5eleqtrrdi 2839 . . . . . . . . . . 11 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁1-1-onto𝑀) → 𝐴𝑁)
32 prcom 4686 . . . . . . . . . . . . . . . . . . 19 {𝐴, 𝐵} = {𝐵, 𝐴}
3332eleq1i 2819 . . . . . . . . . . . . . . . . . 18 ({𝐴, 𝐵} ∈ 𝐼 ↔ {𝐵, 𝐴} ∈ 𝐼)
3433biimpi 216 . . . . . . . . . . . . . . . . 17 ({𝐴, 𝐵} ∈ 𝐼 → {𝐵, 𝐴} ∈ 𝐼)
35343ad2ant3 1135 . . . . . . . . . . . . . . . 16 ((𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼) → {𝐵, 𝐴} ∈ 𝐼)
36353ad2ant3 1135 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → {𝐵, 𝐴} ∈ 𝐼)
3736adantr 480 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁1-1-onto𝑀) → {𝐵, 𝐴} ∈ 𝐼)
3837olcd 874 . . . . . . . . . . . . 13 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁1-1-onto𝑀) → (𝐵 = 𝐴 ∨ {𝐵, 𝐴} ∈ 𝐼))
39 uspgrupgr 29141 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
4039adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → 𝐺 ∈ UPGraph)
41403ad2ant1 1133 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → 𝐺 ∈ UPGraph)
42 prid2g 4715 . . . . . . . . . . . . . . . . . . 19 (𝐵𝑊𝐵 ∈ {𝐴, 𝐵})
43423ad2ant2 1134 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼) → 𝐵 ∈ {𝐴, 𝐵})
44433ad2ant3 1135 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → 𝐵 ∈ {𝐴, 𝐵})
45 uhgredgrnv 29093 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ UHGraph ∧ {𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ 𝐵 ∈ {𝐴, 𝐵}) → 𝐵 ∈ (Vtx‘𝐺))
4619, 23, 44, 45syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → 𝐵 ∈ (Vtx‘𝐺))
4741, 26, 463jca 1128 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → (𝐺 ∈ UPGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
4847adantr 480 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁1-1-onto𝑀) → (𝐺 ∈ UPGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
4928, 6clnbupgrel 47819 . . . . . . . . . . . . . 14 ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (𝐵 ∈ (𝐺 ClNeighbVtx 𝐴) ↔ (𝐵 = 𝐴 ∨ {𝐵, 𝐴} ∈ 𝐼)))
5048, 49syl 17 . . . . . . . . . . . . 13 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁1-1-onto𝑀) → (𝐵 ∈ (𝐺 ClNeighbVtx 𝐴) ↔ (𝐵 = 𝐴 ∨ {𝐵, 𝐴} ∈ 𝐼)))
5138, 50mpbird 257 . . . . . . . . . . . 12 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁1-1-onto𝑀) → 𝐵 ∈ (𝐺 ClNeighbVtx 𝐴))
5251, 5eleqtrrdi 2839 . . . . . . . . . . 11 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁1-1-onto𝑀) → 𝐵𝑁)
53 fnimapr 6910 . . . . . . . . . . 11 ((𝑓 Fn 𝑁𝐴𝑁𝐵𝑁) → (𝑓 “ {𝐴, 𝐵}) = {(𝑓𝐴), (𝑓𝐵)})
5416, 31, 52, 53syl3anc 1373 . . . . . . . . . 10 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁1-1-onto𝑀) → (𝑓 “ {𝐴, 𝐵}) = {(𝑓𝐴), (𝑓𝐵)})
5554eqeq1d 2731 . . . . . . . . 9 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁1-1-onto𝑀) → ((𝑓 “ {𝐴, 𝐵}) = (𝑔‘{𝐴, 𝐵}) ↔ {(𝑓𝐴), (𝑓𝐵)} = (𝑔‘{𝐴, 𝐵})))
5655biimpd 229 . . . . . . . 8 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁1-1-onto𝑀) → ((𝑓 “ {𝐴, 𝐵}) = (𝑔‘{𝐴, 𝐵}) → {(𝑓𝐴), (𝑓𝐵)} = (𝑔‘{𝐴, 𝐵})))
5756a1d 25 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁1-1-onto𝑀) → (𝑔:𝐾1-1-onto𝐿 → ((𝑓 “ {𝐴, 𝐵}) = (𝑔‘{𝐴, 𝐵}) → {(𝑓𝐴), (𝑓𝐵)} = (𝑔‘{𝐴, 𝐵}))))
5857ex 412 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → (𝑓:𝑁1-1-onto𝑀 → (𝑔:𝐾1-1-onto𝐿 → ((𝑓 “ {𝐴, 𝐵}) = (𝑔‘{𝐴, 𝐵}) → {(𝑓𝐴), (𝑓𝐵)} = (𝑔‘{𝐴, 𝐵})))))
59583imp2 1350 . . . . 5 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿 ∧ (𝑓 “ {𝐴, 𝐵}) = (𝑔‘{𝐴, 𝐵}))) → {(𝑓𝐴), (𝑓𝐵)} = (𝑔‘{𝐴, 𝐵}))
6013, 14, 593jca 1128 . . . 4 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ (𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿 ∧ (𝑓 “ {𝐴, 𝐵}) = (𝑔‘{𝐴, 𝐵}))) → (𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿 ∧ {(𝑓𝐴), (𝑓𝐵)} = (𝑔‘{𝐴, 𝐵})))
6160ex 412 . . 3 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ((𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿 ∧ (𝑓 “ {𝐴, 𝐵}) = (𝑔‘{𝐴, 𝐵})) → (𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿 ∧ {(𝑓𝐴), (𝑓𝐵)} = (𝑔‘{𝐴, 𝐵}))))
62612eximdv 1919 . 2 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → (∃𝑓𝑔(𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿 ∧ (𝑓 “ {𝐴, 𝐵}) = (𝑔‘{𝐴, 𝐵})) → ∃𝑓𝑔(𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿 ∧ {(𝑓𝐴), (𝑓𝐵)} = (𝑔‘{𝐴, 𝐵}))))
6312, 62mpd 15 1 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ∃𝑓𝑔(𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿 ∧ {(𝑓𝐴), (𝑓𝐵)} = (𝑔‘{𝐴, 𝐵})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {crab 3396  wss 3905  {cpr 4581  cima 5626   Fn wfn 6481  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  Vtxcvtx 28959  Edgcedg 29010  UHGraphcuhgr 29019  UPGraphcupgr 29043  USPGraphcuspgr 29111   ClNeighbVtx cclnbgr 47803   GraphLocIso cgrlim 47961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-fz 13429  df-hash 14256  df-vtx 28961  df-iedg 28962  df-edg 29011  df-uhgr 29021  df-upgr 29045  df-uspgr 29113  df-nbgr 29296  df-clnbgr 47804  df-isubgr 47846  df-grim 47863  df-gric 47866  df-grlim 47963
This theorem is referenced by:  grlimprclnbgredg  47982
  Copyright terms: Public domain W3C validator