| Step | Hyp | Ref
| Expression |
| 1 | | grlimgredgex.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ USPGraph) |
| 2 | | grlimgredgex.h |
. . 3
⊢ (𝜑 → 𝐻 ∈ USPGraph) |
| 3 | | grlimgredgex.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) |
| 4 | | grlimgredgex.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 5 | | grlimgredgex.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ 𝑌) |
| 6 | | grlimgredgex.p |
. . 3
⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝐼) |
| 7 | | eqid 2729 |
. . . 4
⊢ (𝐺 ClNeighbVtx 𝐴) = (𝐺 ClNeighbVtx 𝐴) |
| 8 | | grlimgredgex.i |
. . . 4
⊢ 𝐼 = (Edg‘𝐺) |
| 9 | | eqid 2729 |
. . . 4
⊢ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} |
| 10 | | eqid 2729 |
. . . 4
⊢ (𝐻 ClNeighbVtx (𝐹‘𝐴)) = (𝐻 ClNeighbVtx (𝐹‘𝐴)) |
| 11 | | grlimgredgex.e |
. . . 4
⊢ 𝐸 = (Edg‘𝐻) |
| 12 | | eqid 2729 |
. . . 4
⊢ {𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} = {𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} |
| 13 | 7, 8, 9, 10, 11, 12 | grlimprclnbgrvtx 47984 |
. . 3
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴)) ∧ ({(𝐹‘𝐴), (𝑓‘𝐵)} ∈ {𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} ∨ {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ {𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))}))) |
| 14 | 1, 2, 3, 4, 5, 6, 13 | syl213anc 1391 |
. 2
⊢ (𝜑 → ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴)) ∧ ({(𝐹‘𝐴), (𝑓‘𝐵)} ∈ {𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} ∨ {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ {𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))}))) |
| 15 | | f1of 6768 |
. . . . . . . . . . 11
⊢ (𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴)) → 𝑓:(𝐺 ClNeighbVtx 𝐴)⟶(𝐻 ClNeighbVtx (𝐹‘𝐴))) |
| 16 | 15 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴))) → 𝑓:(𝐺 ClNeighbVtx 𝐴)⟶(𝐻 ClNeighbVtx (𝐹‘𝐴))) |
| 17 | | uspgrupgr 29141 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ USPGraph → 𝐺 ∈
UPGraph) |
| 18 | 1, 17 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺 ∈ UPGraph) |
| 19 | 4, 5 | jca 511 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) |
| 20 | 18, 19, 6 | 3jca 1128 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺 ∈ UPGraph ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) ∧ {𝐴, 𝐵} ∈ 𝐼)) |
| 21 | | eqid 2729 |
. . . . . . . . . . . . . 14
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 22 | 21, 8 | upgrpredgv 29102 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ UPGraph ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) ∧ {𝐴, 𝐵} ∈ 𝐼) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) |
| 23 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → 𝐵 ∈ (Vtx‘𝐺)) |
| 24 | 20, 22, 23 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ (Vtx‘𝐺)) |
| 25 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → 𝐴 ∈ (Vtx‘𝐺)) |
| 26 | 20, 22, 25 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ (Vtx‘𝐺)) |
| 27 | 21, 8 | predgclnbgrel 47824 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ {𝐴, 𝐵} ∈ 𝐼) → 𝐵 ∈ (𝐺 ClNeighbVtx 𝐴)) |
| 28 | 24, 26, 6, 27 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ (𝐺 ClNeighbVtx 𝐴)) |
| 29 | 28 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴))) → 𝐵 ∈ (𝐺 ClNeighbVtx 𝐴)) |
| 30 | 16, 29 | ffvelcdmd 7023 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴))) → (𝑓‘𝐵) ∈ (𝐻 ClNeighbVtx (𝐹‘𝐴))) |
| 31 | | grlimgredgex.v |
. . . . . . . . . 10
⊢ 𝑉 = (Vtx‘𝐻) |
| 32 | 31 | clnbgrisvtx 47815 |
. . . . . . . . 9
⊢ ((𝑓‘𝐵) ∈ (𝐻 ClNeighbVtx (𝐹‘𝐴)) → (𝑓‘𝐵) ∈ 𝑉) |
| 33 | 30, 32 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴))) → (𝑓‘𝐵) ∈ 𝑉) |
| 34 | 33 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴))) ∧ {(𝐹‘𝐴), (𝑓‘𝐵)} ∈ {𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))}) → (𝑓‘𝐵) ∈ 𝑉) |
| 35 | | preq2 4688 |
. . . . . . . . 9
⊢ (𝑣 = (𝑓‘𝐵) → {(𝐹‘𝐴), 𝑣} = {(𝐹‘𝐴), (𝑓‘𝐵)}) |
| 36 | 35 | eleq1d 2813 |
. . . . . . . 8
⊢ (𝑣 = (𝑓‘𝐵) → ({(𝐹‘𝐴), 𝑣} ∈ 𝐸 ↔ {(𝐹‘𝐴), (𝑓‘𝐵)} ∈ 𝐸)) |
| 37 | 36 | adantl 481 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴))) ∧ {(𝐹‘𝐴), (𝑓‘𝐵)} ∈ {𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))}) ∧ 𝑣 = (𝑓‘𝐵)) → ({(𝐹‘𝐴), 𝑣} ∈ 𝐸 ↔ {(𝐹‘𝐴), (𝑓‘𝐵)} ∈ 𝐸)) |
| 38 | | sseq1 3963 |
. . . . . . . . . 10
⊢ (𝑥 = {(𝐹‘𝐴), (𝑓‘𝐵)} → (𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴)) ↔ {(𝐹‘𝐴), (𝑓‘𝐵)} ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴)))) |
| 39 | 38 | elrab 3650 |
. . . . . . . . 9
⊢ ({(𝐹‘𝐴), (𝑓‘𝐵)} ∈ {𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} ↔ ({(𝐹‘𝐴), (𝑓‘𝐵)} ∈ 𝐸 ∧ {(𝐹‘𝐴), (𝑓‘𝐵)} ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴)))) |
| 40 | 39 | simplbi 497 |
. . . . . . . 8
⊢ ({(𝐹‘𝐴), (𝑓‘𝐵)} ∈ {𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} → {(𝐹‘𝐴), (𝑓‘𝐵)} ∈ 𝐸) |
| 41 | 40 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴))) ∧ {(𝐹‘𝐴), (𝑓‘𝐵)} ∈ {𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))}) → {(𝐹‘𝐴), (𝑓‘𝐵)} ∈ 𝐸) |
| 42 | 34, 37, 41 | rspcedvd 3581 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴))) ∧ {(𝐹‘𝐴), (𝑓‘𝐵)} ∈ {𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))}) → ∃𝑣 ∈ 𝑉 {(𝐹‘𝐴), 𝑣} ∈ 𝐸) |
| 43 | 42 | ex 412 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴))) → ({(𝐹‘𝐴), (𝑓‘𝐵)} ∈ {𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} → ∃𝑣 ∈ 𝑉 {(𝐹‘𝐴), 𝑣} ∈ 𝐸)) |
| 44 | 21 | clnbgrvtxel 47814 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ (Vtx‘𝐺) → 𝐴 ∈ (𝐺 ClNeighbVtx 𝐴)) |
| 45 | 26, 44 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ (𝐺 ClNeighbVtx 𝐴)) |
| 46 | 45 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴))) → 𝐴 ∈ (𝐺 ClNeighbVtx 𝐴)) |
| 47 | 16, 46 | ffvelcdmd 7023 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴))) → (𝑓‘𝐴) ∈ (𝐻 ClNeighbVtx (𝐹‘𝐴))) |
| 48 | 31 | clnbgrisvtx 47815 |
. . . . . . . . 9
⊢ ((𝑓‘𝐴) ∈ (𝐻 ClNeighbVtx (𝐹‘𝐴)) → (𝑓‘𝐴) ∈ 𝑉) |
| 49 | 47, 48 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴))) → (𝑓‘𝐴) ∈ 𝑉) |
| 50 | 49 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴))) ∧ {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ {𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))}) → (𝑓‘𝐴) ∈ 𝑉) |
| 51 | | preq2 4688 |
. . . . . . . . 9
⊢ (𝑣 = (𝑓‘𝐴) → {(𝐹‘𝐴), 𝑣} = {(𝐹‘𝐴), (𝑓‘𝐴)}) |
| 52 | 51 | eleq1d 2813 |
. . . . . . . 8
⊢ (𝑣 = (𝑓‘𝐴) → ({(𝐹‘𝐴), 𝑣} ∈ 𝐸 ↔ {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ 𝐸)) |
| 53 | 52 | adantl 481 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴))) ∧ {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ {𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))}) ∧ 𝑣 = (𝑓‘𝐴)) → ({(𝐹‘𝐴), 𝑣} ∈ 𝐸 ↔ {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ 𝐸)) |
| 54 | | sseq1 3963 |
. . . . . . . . . 10
⊢ (𝑥 = {(𝐹‘𝐴), (𝑓‘𝐴)} → (𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴)) ↔ {(𝐹‘𝐴), (𝑓‘𝐴)} ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴)))) |
| 55 | 54 | elrab 3650 |
. . . . . . . . 9
⊢ ({(𝐹‘𝐴), (𝑓‘𝐴)} ∈ {𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} ↔ ({(𝐹‘𝐴), (𝑓‘𝐴)} ∈ 𝐸 ∧ {(𝐹‘𝐴), (𝑓‘𝐴)} ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴)))) |
| 56 | 55 | simplbi 497 |
. . . . . . . 8
⊢ ({(𝐹‘𝐴), (𝑓‘𝐴)} ∈ {𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} → {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ 𝐸) |
| 57 | 56 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴))) ∧ {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ {𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))}) → {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ 𝐸) |
| 58 | 50, 53, 57 | rspcedvd 3581 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴))) ∧ {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ {𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))}) → ∃𝑣 ∈ 𝑉 {(𝐹‘𝐴), 𝑣} ∈ 𝐸) |
| 59 | 58 | ex 412 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴))) → ({(𝐹‘𝐴), (𝑓‘𝐴)} ∈ {𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} → ∃𝑣 ∈ 𝑉 {(𝐹‘𝐴), 𝑣} ∈ 𝐸)) |
| 60 | 43, 59 | jaod 859 |
. . . 4
⊢ ((𝜑 ∧ 𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴))) → (({(𝐹‘𝐴), (𝑓‘𝐵)} ∈ {𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} ∨ {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ {𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))}) → ∃𝑣 ∈ 𝑉 {(𝐹‘𝐴), 𝑣} ∈ 𝐸)) |
| 61 | 60 | expimpd 453 |
. . 3
⊢ (𝜑 → ((𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴)) ∧ ({(𝐹‘𝐴), (𝑓‘𝐵)} ∈ {𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} ∨ {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ {𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))})) → ∃𝑣 ∈ 𝑉 {(𝐹‘𝐴), 𝑣} ∈ 𝐸)) |
| 62 | 61 | exlimdv 1933 |
. 2
⊢ (𝜑 → (∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝐴)) ∧ ({(𝐹‘𝐴), (𝑓‘𝐵)} ∈ {𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))} ∨ {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ {𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝐴))})) → ∃𝑣 ∈ 𝑉 {(𝐹‘𝐴), 𝑣} ∈ 𝐸)) |
| 63 | 14, 62 | mpd 15 |
1
⊢ (𝜑 → ∃𝑣 ∈ 𝑉 {(𝐹‘𝐴), 𝑣} ∈ 𝐸) |