Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlimgredgex Structured version   Visualization version   GIF version

Theorem grlimgredgex 48030
Description: Local isomorphisms between simple pseudographs map an edge onto an edge with an endpoint being the image of one of the endpoints of the first edge under the local isomorphism. (Contributed by AV, 28-Dec-2025.)
Hypotheses
Ref Expression
grlimgredgex.i 𝐼 = (Edg‘𝐺)
grlimgredgex.e 𝐸 = (Edg‘𝐻)
grlimgredgex.v 𝑉 = (Vtx‘𝐻)
grlimgredgex.a (𝜑𝐴𝑋)
grlimgredgex.b (𝜑𝐵𝑌)
grlimgredgex.p (𝜑 → {𝐴, 𝐵} ∈ 𝐼)
grlimgredgex.g (𝜑𝐺 ∈ USPGraph)
grlimgredgex.h (𝜑𝐻 ∈ USPGraph)
grlimgredgex.f (𝜑𝐹 ∈ (𝐺 GraphLocIso 𝐻))
Assertion
Ref Expression
grlimgredgex (𝜑 → ∃𝑣𝑉 {(𝐹𝐴), 𝑣} ∈ 𝐸)
Distinct variable groups:   𝑣,𝐴   𝑣,𝐵   𝑣,𝐸   𝑣,𝐹   𝑣,𝐺   𝑣,𝐻   𝑣,𝑉   𝜑,𝑣
Allowed substitution hints:   𝐼(𝑣)   𝑋(𝑣)   𝑌(𝑣)

Proof of Theorem grlimgredgex
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grlimgredgex.g . . 3 (𝜑𝐺 ∈ USPGraph)
2 grlimgredgex.h . . 3 (𝜑𝐻 ∈ USPGraph)
3 grlimgredgex.f . . 3 (𝜑𝐹 ∈ (𝐺 GraphLocIso 𝐻))
4 grlimgredgex.a . . 3 (𝜑𝐴𝑋)
5 grlimgredgex.b . . 3 (𝜑𝐵𝑌)
6 grlimgredgex.p . . 3 (𝜑 → {𝐴, 𝐵} ∈ 𝐼)
7 eqid 2731 . . . 4 (𝐺 ClNeighbVtx 𝐴) = (𝐺 ClNeighbVtx 𝐴)
8 grlimgredgex.i . . . 4 𝐼 = (Edg‘𝐺)
9 eqid 2731 . . . 4 {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)} = {𝑥𝐼𝑥 ⊆ (𝐺 ClNeighbVtx 𝐴)}
10 eqid 2731 . . . 4 (𝐻 ClNeighbVtx (𝐹𝐴)) = (𝐻 ClNeighbVtx (𝐹𝐴))
11 grlimgredgex.e . . . 4 𝐸 = (Edg‘𝐻)
12 eqid 2731 . . . 4 {𝑥𝐸𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} = {𝑥𝐸𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))}
137, 8, 9, 10, 11, 12grlimprclnbgrvtx 48029 . . 3 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑋𝐵𝑌 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴)) ∧ ({(𝐹𝐴), (𝑓𝐵)} ∈ {𝑥𝐸𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} ∨ {(𝐹𝐴), (𝑓𝐴)} ∈ {𝑥𝐸𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))})))
141, 2, 3, 4, 5, 6, 13syl213anc 1391 . 2 (𝜑 → ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴)) ∧ ({(𝐹𝐴), (𝑓𝐵)} ∈ {𝑥𝐸𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} ∨ {(𝐹𝐴), (𝑓𝐴)} ∈ {𝑥𝐸𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))})))
15 f1of 6763 . . . . . . . . . . 11 (𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴)) → 𝑓:(𝐺 ClNeighbVtx 𝐴)⟶(𝐻 ClNeighbVtx (𝐹𝐴)))
1615adantl 481 . . . . . . . . . 10 ((𝜑𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴))) → 𝑓:(𝐺 ClNeighbVtx 𝐴)⟶(𝐻 ClNeighbVtx (𝐹𝐴)))
17 uspgrupgr 29154 . . . . . . . . . . . . . . 15 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
181, 17syl 17 . . . . . . . . . . . . . 14 (𝜑𝐺 ∈ UPGraph)
194, 5jca 511 . . . . . . . . . . . . . 14 (𝜑 → (𝐴𝑋𝐵𝑌))
2018, 19, 63jca 1128 . . . . . . . . . . . . 13 (𝜑 → (𝐺 ∈ UPGraph ∧ (𝐴𝑋𝐵𝑌) ∧ {𝐴, 𝐵} ∈ 𝐼))
21 eqid 2731 . . . . . . . . . . . . . 14 (Vtx‘𝐺) = (Vtx‘𝐺)
2221, 8upgrpredgv 29115 . . . . . . . . . . . . 13 ((𝐺 ∈ UPGraph ∧ (𝐴𝑋𝐵𝑌) ∧ {𝐴, 𝐵} ∈ 𝐼) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
23 simpr 484 . . . . . . . . . . . . 13 ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → 𝐵 ∈ (Vtx‘𝐺))
2420, 22, 233syl 18 . . . . . . . . . . . 12 (𝜑𝐵 ∈ (Vtx‘𝐺))
25 simpl 482 . . . . . . . . . . . . 13 ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → 𝐴 ∈ (Vtx‘𝐺))
2620, 22, 253syl 18 . . . . . . . . . . . 12 (𝜑𝐴 ∈ (Vtx‘𝐺))
2721, 8predgclnbgrel 47869 . . . . . . . . . . . 12 ((𝐵 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ {𝐴, 𝐵} ∈ 𝐼) → 𝐵 ∈ (𝐺 ClNeighbVtx 𝐴))
2824, 26, 6, 27syl3anc 1373 . . . . . . . . . . 11 (𝜑𝐵 ∈ (𝐺 ClNeighbVtx 𝐴))
2928adantr 480 . . . . . . . . . 10 ((𝜑𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴))) → 𝐵 ∈ (𝐺 ClNeighbVtx 𝐴))
3016, 29ffvelcdmd 7018 . . . . . . . . 9 ((𝜑𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴))) → (𝑓𝐵) ∈ (𝐻 ClNeighbVtx (𝐹𝐴)))
31 grlimgredgex.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐻)
3231clnbgrisvtx 47860 . . . . . . . . 9 ((𝑓𝐵) ∈ (𝐻 ClNeighbVtx (𝐹𝐴)) → (𝑓𝐵) ∈ 𝑉)
3330, 32syl 17 . . . . . . . 8 ((𝜑𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴))) → (𝑓𝐵) ∈ 𝑉)
3433adantr 480 . . . . . . 7 (((𝜑𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴))) ∧ {(𝐹𝐴), (𝑓𝐵)} ∈ {𝑥𝐸𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))}) → (𝑓𝐵) ∈ 𝑉)
35 preq2 4687 . . . . . . . . 9 (𝑣 = (𝑓𝐵) → {(𝐹𝐴), 𝑣} = {(𝐹𝐴), (𝑓𝐵)})
3635eleq1d 2816 . . . . . . . 8 (𝑣 = (𝑓𝐵) → ({(𝐹𝐴), 𝑣} ∈ 𝐸 ↔ {(𝐹𝐴), (𝑓𝐵)} ∈ 𝐸))
3736adantl 481 . . . . . . 7 ((((𝜑𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴))) ∧ {(𝐹𝐴), (𝑓𝐵)} ∈ {𝑥𝐸𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))}) ∧ 𝑣 = (𝑓𝐵)) → ({(𝐹𝐴), 𝑣} ∈ 𝐸 ↔ {(𝐹𝐴), (𝑓𝐵)} ∈ 𝐸))
38 sseq1 3960 . . . . . . . . . 10 (𝑥 = {(𝐹𝐴), (𝑓𝐵)} → (𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴)) ↔ {(𝐹𝐴), (𝑓𝐵)} ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))))
3938elrab 3647 . . . . . . . . 9 ({(𝐹𝐴), (𝑓𝐵)} ∈ {𝑥𝐸𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} ↔ ({(𝐹𝐴), (𝑓𝐵)} ∈ 𝐸 ∧ {(𝐹𝐴), (𝑓𝐵)} ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))))
4039simplbi 497 . . . . . . . 8 ({(𝐹𝐴), (𝑓𝐵)} ∈ {𝑥𝐸𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} → {(𝐹𝐴), (𝑓𝐵)} ∈ 𝐸)
4140adantl 481 . . . . . . 7 (((𝜑𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴))) ∧ {(𝐹𝐴), (𝑓𝐵)} ∈ {𝑥𝐸𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))}) → {(𝐹𝐴), (𝑓𝐵)} ∈ 𝐸)
4234, 37, 41rspcedvd 3579 . . . . . 6 (((𝜑𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴))) ∧ {(𝐹𝐴), (𝑓𝐵)} ∈ {𝑥𝐸𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))}) → ∃𝑣𝑉 {(𝐹𝐴), 𝑣} ∈ 𝐸)
4342ex 412 . . . . 5 ((𝜑𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴))) → ({(𝐹𝐴), (𝑓𝐵)} ∈ {𝑥𝐸𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} → ∃𝑣𝑉 {(𝐹𝐴), 𝑣} ∈ 𝐸))
4421clnbgrvtxel 47859 . . . . . . . . . . . 12 (𝐴 ∈ (Vtx‘𝐺) → 𝐴 ∈ (𝐺 ClNeighbVtx 𝐴))
4526, 44syl 17 . . . . . . . . . . 11 (𝜑𝐴 ∈ (𝐺 ClNeighbVtx 𝐴))
4645adantr 480 . . . . . . . . . 10 ((𝜑𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴))) → 𝐴 ∈ (𝐺 ClNeighbVtx 𝐴))
4716, 46ffvelcdmd 7018 . . . . . . . . 9 ((𝜑𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴))) → (𝑓𝐴) ∈ (𝐻 ClNeighbVtx (𝐹𝐴)))
4831clnbgrisvtx 47860 . . . . . . . . 9 ((𝑓𝐴) ∈ (𝐻 ClNeighbVtx (𝐹𝐴)) → (𝑓𝐴) ∈ 𝑉)
4947, 48syl 17 . . . . . . . 8 ((𝜑𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴))) → (𝑓𝐴) ∈ 𝑉)
5049adantr 480 . . . . . . 7 (((𝜑𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴))) ∧ {(𝐹𝐴), (𝑓𝐴)} ∈ {𝑥𝐸𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))}) → (𝑓𝐴) ∈ 𝑉)
51 preq2 4687 . . . . . . . . 9 (𝑣 = (𝑓𝐴) → {(𝐹𝐴), 𝑣} = {(𝐹𝐴), (𝑓𝐴)})
5251eleq1d 2816 . . . . . . . 8 (𝑣 = (𝑓𝐴) → ({(𝐹𝐴), 𝑣} ∈ 𝐸 ↔ {(𝐹𝐴), (𝑓𝐴)} ∈ 𝐸))
5352adantl 481 . . . . . . 7 ((((𝜑𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴))) ∧ {(𝐹𝐴), (𝑓𝐴)} ∈ {𝑥𝐸𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))}) ∧ 𝑣 = (𝑓𝐴)) → ({(𝐹𝐴), 𝑣} ∈ 𝐸 ↔ {(𝐹𝐴), (𝑓𝐴)} ∈ 𝐸))
54 sseq1 3960 . . . . . . . . . 10 (𝑥 = {(𝐹𝐴), (𝑓𝐴)} → (𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴)) ↔ {(𝐹𝐴), (𝑓𝐴)} ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))))
5554elrab 3647 . . . . . . . . 9 ({(𝐹𝐴), (𝑓𝐴)} ∈ {𝑥𝐸𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} ↔ ({(𝐹𝐴), (𝑓𝐴)} ∈ 𝐸 ∧ {(𝐹𝐴), (𝑓𝐴)} ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))))
5655simplbi 497 . . . . . . . 8 ({(𝐹𝐴), (𝑓𝐴)} ∈ {𝑥𝐸𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} → {(𝐹𝐴), (𝑓𝐴)} ∈ 𝐸)
5756adantl 481 . . . . . . 7 (((𝜑𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴))) ∧ {(𝐹𝐴), (𝑓𝐴)} ∈ {𝑥𝐸𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))}) → {(𝐹𝐴), (𝑓𝐴)} ∈ 𝐸)
5850, 53, 57rspcedvd 3579 . . . . . 6 (((𝜑𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴))) ∧ {(𝐹𝐴), (𝑓𝐴)} ∈ {𝑥𝐸𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))}) → ∃𝑣𝑉 {(𝐹𝐴), 𝑣} ∈ 𝐸)
5958ex 412 . . . . 5 ((𝜑𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴))) → ({(𝐹𝐴), (𝑓𝐴)} ∈ {𝑥𝐸𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} → ∃𝑣𝑉 {(𝐹𝐴), 𝑣} ∈ 𝐸))
6043, 59jaod 859 . . . 4 ((𝜑𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴))) → (({(𝐹𝐴), (𝑓𝐵)} ∈ {𝑥𝐸𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} ∨ {(𝐹𝐴), (𝑓𝐴)} ∈ {𝑥𝐸𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))}) → ∃𝑣𝑉 {(𝐹𝐴), 𝑣} ∈ 𝐸))
6160expimpd 453 . . 3 (𝜑 → ((𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴)) ∧ ({(𝐹𝐴), (𝑓𝐵)} ∈ {𝑥𝐸𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} ∨ {(𝐹𝐴), (𝑓𝐴)} ∈ {𝑥𝐸𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))})) → ∃𝑣𝑉 {(𝐹𝐴), 𝑣} ∈ 𝐸))
6261exlimdv 1934 . 2 (𝜑 → (∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝐴)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝐴)) ∧ ({(𝐹𝐴), (𝑓𝐵)} ∈ {𝑥𝐸𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))} ∨ {(𝐹𝐴), (𝑓𝐴)} ∈ {𝑥𝐸𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝐴))})) → ∃𝑣𝑉 {(𝐹𝐴), 𝑣} ∈ 𝐸))
6314, 62mpd 15 1 (𝜑 → ∃𝑣𝑉 {(𝐹𝐴), 𝑣} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wrex 3056  {crab 3395  wss 3902  {cpr 4578  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Vtxcvtx 28972  Edgcedg 29023  UPGraphcupgr 29056  USPGraphcuspgr 29124   ClNeighbVtx cclnbgr 47848   GraphLocIso cgrlim 48006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9791  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-n0 12379  df-xnn0 12452  df-z 12466  df-uz 12730  df-fz 13405  df-hash 14235  df-vtx 28974  df-iedg 28975  df-edg 29024  df-uhgr 29034  df-upgr 29058  df-uspgr 29126  df-nbgr 29309  df-clnbgr 47849  df-isubgr 47891  df-grim 47908  df-gric 47911  df-grlim 48008
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator