Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfmpt2f Structured version   Visualization version   GIF version

Theorem cncfmpt2f 23509
 Description: Composition of continuous functions. –cn→ analogue of cnmpt12f 22260. (Contributed by Mario Carneiro, 3-Sep-2014.)
Hypotheses
Ref Expression
cncfmpt2f.1 𝐽 = (TopOpen‘ℂfld)
cncfmpt2f.2 (𝜑𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
cncfmpt2f.3 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
cncfmpt2f.4 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))
Assertion
Ref Expression
cncfmpt2f (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋cn→ℂ))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝜑,𝑥   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem cncfmpt2f
StepHypRef Expression
1 cncfmpt2f.1 . . . . 5 𝐽 = (TopOpen‘ℂfld)
21cnfldtopon 23377 . . . 4 𝐽 ∈ (TopOn‘ℂ)
3 cncfmpt2f.3 . . . . 5 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
4 cncfrss 23485 . . . . 5 ((𝑥𝑋𝐴) ∈ (𝑋cn→ℂ) → 𝑋 ⊆ ℂ)
53, 4syl 17 . . . 4 (𝜑𝑋 ⊆ ℂ)
6 resttopon 21755 . . . 4 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑋 ⊆ ℂ) → (𝐽t 𝑋) ∈ (TopOn‘𝑋))
72, 5, 6sylancr 590 . . 3 (𝜑 → (𝐽t 𝑋) ∈ (TopOn‘𝑋))
8 ssid 3973 . . . . 5 ℂ ⊆ ℂ
9 eqid 2824 . . . . . 6 (𝐽t 𝑋) = (𝐽t 𝑋)
102toponrestid 21515 . . . . . 6 𝐽 = (𝐽t ℂ)
111, 9, 10cncfcn 23504 . . . . 5 ((𝑋 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑋cn→ℂ) = ((𝐽t 𝑋) Cn 𝐽))
125, 8, 11sylancl 589 . . . 4 (𝜑 → (𝑋cn→ℂ) = ((𝐽t 𝑋) Cn 𝐽))
133, 12eleqtrd 2918 . . 3 (𝜑 → (𝑥𝑋𝐴) ∈ ((𝐽t 𝑋) Cn 𝐽))
14 cncfmpt2f.4 . . . 4 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))
1514, 12eleqtrd 2918 . . 3 (𝜑 → (𝑥𝑋𝐵) ∈ ((𝐽t 𝑋) Cn 𝐽))
16 cncfmpt2f.2 . . 3 (𝜑𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
177, 13, 15, 16cnmpt12f 22260 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ ((𝐽t 𝑋) Cn 𝐽))
1817, 12eleqtrrd 2919 1 (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋cn→ℂ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2115   ⊆ wss 3918   ↦ cmpt 5127  ‘cfv 6336  (class class class)co 7138  ℂcc 10520   ↾t crest 16683  TopOpenctopn 16684  ℂfldccnfld 20531  TopOnctopon 21504   Cn ccn 21818   ×t ctx 22154  –cn→ccncf 23470 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599  ax-pre-sup 10600 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-1st 7672  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-div 11283  df-nn 11624  df-2 11686  df-3 11687  df-4 11688  df-5 11689  df-6 11690  df-7 11691  df-8 11692  df-9 11693  df-n0 11884  df-z 11968  df-dec 12085  df-uz 12230  df-q 12335  df-rp 12376  df-xneg 12493  df-xadd 12494  df-xmul 12495  df-fz 12884  df-seq 13363  df-exp 13424  df-cj 14447  df-re 14448  df-im 14449  df-sqrt 14583  df-abs 14584  df-struct 16474  df-ndx 16475  df-slot 16476  df-base 16478  df-plusg 16567  df-mulr 16568  df-starv 16569  df-tset 16573  df-ple 16574  df-ds 16576  df-unif 16577  df-rest 16685  df-topn 16686  df-topgen 16706  df-psmet 20523  df-xmet 20524  df-met 20525  df-bl 20526  df-mopn 20527  df-cnfld 20532  df-top 21488  df-topon 21505  df-topsp 21527  df-bases 21540  df-cn 21821  df-cnp 21822  df-tx 22156  df-xms 22916  df-ms 22917  df-cncf 23472 This theorem is referenced by:  cncfmpt2ss  23510  addccncf  23511  sub1cncf  23513  sub2cncf  23514  negcncf  23516  addcncf  24037  subcncf  24038  mulcncf  24039  dvcnp2  24512  dvlipcn  24586  dvfsumabs  24615  ftc2  24636  itgparts  24639  taylthlem2  24958  sincn  25028  coscn  25029  logcn  25227  loglesqrt  25336  lgamgulmlem2  25604  pntlem3  26182  logdivsqrle  31939  ftc1cnnclem  35028  ftc2nc  35039  areacirclem4  35048  areaquad  39998
 Copyright terms: Public domain W3C validator