MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmcn Structured version   Visualization version   GIF version

Theorem ulmcn 24997
Description: A uniform limit of continuous functions is continuous. (Contributed by Mario Carneiro, 27-Feb-2015.)
Hypotheses
Ref Expression
ulmcn.z 𝑍 = (ℤ𝑀)
ulmcn.m (𝜑𝑀 ∈ ℤ)
ulmcn.f (𝜑𝐹:𝑍⟶(𝑆cn→ℂ))
ulmcn.u (𝜑𝐹(⇝𝑢𝑆)𝐺)
Assertion
Ref Expression
ulmcn (𝜑𝐺 ∈ (𝑆cn→ℂ))

Proof of Theorem ulmcn
Dummy variables 𝑗 𝑘 𝑤 𝑧 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmcn.u . . 3 (𝜑𝐹(⇝𝑢𝑆)𝐺)
2 ulmcl 24979 . . 3 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
31, 2syl 17 . 2 (𝜑𝐺:𝑆⟶ℂ)
4 ulmcn.z . . . . 5 𝑍 = (ℤ𝑀)
5 ulmcn.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
65adantr 484 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → 𝑀 ∈ ℤ)
7 ulmcn.f . . . . . . 7 (𝜑𝐹:𝑍⟶(𝑆cn→ℂ))
8 cncff 23501 . . . . . . . . 9 (𝑥 ∈ (𝑆cn→ℂ) → 𝑥:𝑆⟶ℂ)
9 cnex 10611 . . . . . . . . . 10 ℂ ∈ V
10 cncfrss 23499 . . . . . . . . . . 11 (𝑥 ∈ (𝑆cn→ℂ) → 𝑆 ⊆ ℂ)
11 ssexg 5194 . . . . . . . . . . 11 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
1210, 9, 11sylancl 589 . . . . . . . . . 10 (𝑥 ∈ (𝑆cn→ℂ) → 𝑆 ∈ V)
13 elmapg 8406 . . . . . . . . . 10 ((ℂ ∈ V ∧ 𝑆 ∈ V) → (𝑥 ∈ (ℂ ↑m 𝑆) ↔ 𝑥:𝑆⟶ℂ))
149, 12, 13sylancr 590 . . . . . . . . 9 (𝑥 ∈ (𝑆cn→ℂ) → (𝑥 ∈ (ℂ ↑m 𝑆) ↔ 𝑥:𝑆⟶ℂ))
158, 14mpbird 260 . . . . . . . 8 (𝑥 ∈ (𝑆cn→ℂ) → 𝑥 ∈ (ℂ ↑m 𝑆))
1615ssriv 3922 . . . . . . 7 (𝑆cn→ℂ) ⊆ (ℂ ↑m 𝑆)
17 fss 6505 . . . . . . 7 ((𝐹:𝑍⟶(𝑆cn→ℂ) ∧ (𝑆cn→ℂ) ⊆ (ℂ ↑m 𝑆)) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
187, 16, 17sylancl 589 . . . . . 6 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
1918adantr 484 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
20 eqidd 2802 . . . . 5 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ (𝑘𝑍𝑤𝑆)) → ((𝐹𝑘)‘𝑤) = ((𝐹𝑘)‘𝑤))
21 eqidd 2802 . . . . 5 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑤𝑆) → (𝐺𝑤) = (𝐺𝑤))
221adantr 484 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → 𝐹(⇝𝑢𝑆)𝐺)
23 rphalfcl 12408 . . . . . . 7 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
2423ad2antll 728 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → (𝑦 / 2) ∈ ℝ+)
2524rphalfcld 12435 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → ((𝑦 / 2) / 2) ∈ ℝ+)
264, 6, 19, 20, 21, 22, 25ulmi 24984 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2))
274r19.2uz 14706 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ∃𝑘𝑍𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2))
28 simplrl 776 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → 𝑥𝑆)
29 fveq2 6649 . . . . . . . . . . . 12 (𝑤 = 𝑥 → ((𝐹𝑘)‘𝑤) = ((𝐹𝑘)‘𝑥))
30 fveq2 6649 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (𝐺𝑤) = (𝐺𝑥))
3129, 30oveq12d 7157 . . . . . . . . . . 11 (𝑤 = 𝑥 → (((𝐹𝑘)‘𝑤) − (𝐺𝑤)) = (((𝐹𝑘)‘𝑥) − (𝐺𝑥)))
3231fveq2d 6653 . . . . . . . . . 10 (𝑤 = 𝑥 → (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) = (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))))
3332breq1d 5043 . . . . . . . . 9 (𝑤 = 𝑥 → ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ↔ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)))
3433rspcv 3569 . . . . . . . 8 (𝑥𝑆 → (∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)))
3528, 34syl 17 . . . . . . 7 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → (∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)))
367adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → 𝐹:𝑍⟶(𝑆cn→ℂ))
3736ffvelrnda 6832 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ (𝑆cn→ℂ))
3824adantr 484 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → (𝑦 / 2) ∈ ℝ+)
39 cncfi 23502 . . . . . . . . . . 11 (((𝐹𝑘) ∈ (𝑆cn→ℂ) ∧ 𝑥𝑆 ∧ (𝑦 / 2) ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)))
4037, 28, 38, 39syl3anc 1368 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)))
4140ad2antrr 725 . . . . . . . . 9 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ ∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)))
42 r19.26 3140 . . . . . . . . . . . . 13 (∀𝑤𝑆 ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2))) ↔ (∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ∧ ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2))))
4319ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
44 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝑘𝑍)
4543, 44ffvelrnd 6833 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
46 elmapi 8415 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹𝑘):𝑆⟶ℂ)
4745, 46syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝐹𝑘):𝑆⟶ℂ)
4828adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝑥𝑆)
4947, 48ffvelrnd 6833 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝐹𝑘)‘𝑥) ∈ ℂ)
503ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝐺:𝑆⟶ℂ)
5150, 48ffvelrnd 6833 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝐺𝑥) ∈ ℂ)
5249, 51subcld 10990 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((𝐹𝑘)‘𝑥) − (𝐺𝑥)) ∈ ℂ)
5352abscld 14791 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) ∈ ℝ)
54 ffvelrn 6830 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐹𝑘):𝑆⟶ℂ ∧ 𝑤𝑆) → ((𝐹𝑘)‘𝑤) ∈ ℂ)
5547, 54sylancom 591 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝐹𝑘)‘𝑤) ∈ ℂ)
56 ffvelrn 6830 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺:𝑆⟶ℂ ∧ 𝑤𝑆) → (𝐺𝑤) ∈ ℂ)
5750, 56sylancom 591 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝐺𝑤) ∈ ℂ)
5855, 57subcld 10990 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((𝐹𝑘)‘𝑤) − (𝐺𝑤)) ∈ ℂ)
5958abscld 14791 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) ∈ ℝ)
6038adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝑦 / 2) ∈ ℝ+)
6160rphalfcld 12435 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝑦 / 2) / 2) ∈ ℝ+)
6261rpred 12423 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝑦 / 2) / 2) ∈ ℝ)
63 lt2add 11118 . . . . . . . . . . . . . . . . . . . . 21 ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) ∈ ℝ ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) ∈ ℝ) ∧ (((𝑦 / 2) / 2) ∈ ℝ ∧ ((𝑦 / 2) / 2) ∈ ℝ)) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (((𝑦 / 2) / 2) + ((𝑦 / 2) / 2))))
6453, 59, 62, 62, 63syl22anc 837 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (((𝑦 / 2) / 2) + ((𝑦 / 2) / 2))))
6560rpred 12423 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝑦 / 2) ∈ ℝ)
6665recnd 10662 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝑦 / 2) ∈ ℂ)
67662halvesd 11875 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((𝑦 / 2) / 2) + ((𝑦 / 2) / 2)) = (𝑦 / 2))
6867breq2d 5045 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (((𝑦 / 2) / 2) + ((𝑦 / 2) / 2)) ↔ ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (𝑦 / 2)))
6953, 59readdcld 10663 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) ∈ ℝ)
7055, 49subcld 10990 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)) ∈ ℂ)
7170abscld 14791 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) ∈ ℝ)
72 lt2add 11118 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) ∈ ℝ ∧ (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) ∈ ℝ) ∧ ((𝑦 / 2) ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ)) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (𝑦 / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < ((𝑦 / 2) + (𝑦 / 2))))
7369, 71, 65, 65, 72syl22anc 837 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (𝑦 / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < ((𝑦 / 2) + (𝑦 / 2))))
74 rpre 12389 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
7574ad2antll 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → 𝑦 ∈ ℝ)
7675ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝑦 ∈ ℝ)
7776recnd 10662 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝑦 ∈ ℂ)
78772halvesd 11875 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝑦 / 2) + (𝑦 / 2)) = 𝑦)
7978breq2d 5045 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < ((𝑦 / 2) + (𝑦 / 2)) ↔ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < 𝑦))
8057, 51subcld 10990 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝐺𝑤) − (𝐺𝑥)) ∈ ℂ)
8180abscld 14791 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − (𝐺𝑥))) ∈ ℝ)
8257, 49subcld 10990 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝐺𝑤) − ((𝐹𝑘)‘𝑥)) ∈ ℂ)
8382abscld 14791 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) ∈ ℝ)
8453, 83readdcld 10663 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥)))) ∈ ℝ)
8569, 71readdcld 10663 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) ∈ ℝ)
8657, 51, 49abs3difd 14815 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − (𝐺𝑥))) ≤ ((abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) + (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥)))))
8783recnd 10662 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) ∈ ℂ)
8853recnd 10662 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) ∈ ℂ)
8987, 88addcomd 10835 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) + (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥)))) = ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥)))))
9086, 89breqtrd 5059 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − (𝐺𝑥))) ≤ ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥)))))
9159, 71readdcld 10663 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) ∈ ℝ)
9257, 49, 55abs3difd 14815 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) ≤ ((abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))))
9357, 55abssubd 14808 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑤))) = (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))))
9493oveq1d 7154 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) = ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))))
9592, 94breqtrd 5059 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) ≤ ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))))
9683, 91, 53, 95leadd2dd 11248 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥)))) ≤ ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))))))
9759recnd 10662 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) ∈ ℂ)
9871recnd 10662 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) ∈ ℂ)
9988, 97, 98addassd 10656 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) = ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))))))
10096, 99breqtrrd 5061 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥)))) ≤ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))))
10181, 84, 85, 90, 100letrd 10790 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − (𝐺𝑥))) ≤ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))))
102 lelttr 10724 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((abs‘((𝐺𝑤) − (𝐺𝑥))) ∈ ℝ ∧ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((abs‘((𝐺𝑤) − (𝐺𝑥))) ≤ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) ∧ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < 𝑦) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
10381, 85, 76, 102syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘((𝐺𝑤) − (𝐺𝑥))) ≤ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) ∧ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < 𝑦) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
104101, 103mpand 694 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < 𝑦 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
10579, 104sylbid 243 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < ((𝑦 / 2) + (𝑦 / 2)) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
10673, 105syld 47 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (𝑦 / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
107106expd 419 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (𝑦 / 2) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
10868, 107sylbid 243 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (((𝑦 / 2) / 2) + ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
10964, 108syld 47 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
110109expdimp 456 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
111110an32s 651 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
112111imp 410 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) ∧ 𝑤𝑆) ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
113112imim2d 57 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) ∧ 𝑤𝑆) ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → (((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
114113expimpd 457 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2))) → ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
115114ralimdva 3147 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → (∀𝑤𝑆 ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2))) → ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
11642, 115syl5bir 246 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → ((∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ∧ ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2))) → ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
117116expdimp 456 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) ∧ ∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → (∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
118117an32s 651 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ ∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → (∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
119118reximdv 3235 . . . . . . . . 9 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ ∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → (∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
12041, 119mpd 15 . . . . . . . 8 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ ∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
121120exp31 423 . . . . . . 7 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → (∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))))
12235, 121mpdd 43 . . . . . 6 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → (∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
123122rexlimdva 3246 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → (∃𝑘𝑍𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
12427, 123syl5 34 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
12526, 124mpd 15 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
126125ralrimivva 3159 . 2 (𝜑 → ∀𝑥𝑆𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
127 uzid 12250 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
1285, 127syl 17 . . . . . 6 (𝜑𝑀 ∈ (ℤ𝑀))
129128, 4eleqtrrdi 2904 . . . . 5 (𝜑𝑀𝑍)
1307, 129ffvelrnd 6833 . . . 4 (𝜑 → (𝐹𝑀) ∈ (𝑆cn→ℂ))
131 cncfrss 23499 . . . 4 ((𝐹𝑀) ∈ (𝑆cn→ℂ) → 𝑆 ⊆ ℂ)
132130, 131syl 17 . . 3 (𝜑𝑆 ⊆ ℂ)
133 ssid 3940 . . 3 ℂ ⊆ ℂ
134 elcncf2 23498 . . 3 ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐺 ∈ (𝑆cn→ℂ) ↔ (𝐺:𝑆⟶ℂ ∧ ∀𝑥𝑆𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))))
135132, 133, 134sylancl 589 . 2 (𝜑 → (𝐺 ∈ (𝑆cn→ℂ) ↔ (𝐺:𝑆⟶ℂ ∧ ∀𝑥𝑆𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))))
1363, 126, 135mpbir2and 712 1 (𝜑𝐺 ∈ (𝑆cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  wral 3109  wrex 3110  Vcvv 3444  wss 3884   class class class wbr 5033  wf 6324  cfv 6328  (class class class)co 7139  m cmap 8393  cc 10528  cr 10529   + caddc 10533   < clt 10668  cle 10669  cmin 10863   / cdiv 11290  2c2 11684  cz 11973  cuz 12235  +crp 12381  abscabs 14588  cnccncf 23484  𝑢culm 24974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-seq 13369  df-exp 13430  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-cncf 23486  df-ulm 24975
This theorem is referenced by:  psercn2  25021  knoppcn  33951
  Copyright terms: Public domain W3C validator