MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmcn Structured version   Visualization version   GIF version

Theorem ulmcn 25558
Description: A uniform limit of continuous functions is continuous. (Contributed by Mario Carneiro, 27-Feb-2015.)
Hypotheses
Ref Expression
ulmcn.z 𝑍 = (ℤ𝑀)
ulmcn.m (𝜑𝑀 ∈ ℤ)
ulmcn.f (𝜑𝐹:𝑍⟶(𝑆cn→ℂ))
ulmcn.u (𝜑𝐹(⇝𝑢𝑆)𝐺)
Assertion
Ref Expression
ulmcn (𝜑𝐺 ∈ (𝑆cn→ℂ))

Proof of Theorem ulmcn
Dummy variables 𝑗 𝑘 𝑤 𝑧 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmcn.u . . 3 (𝜑𝐹(⇝𝑢𝑆)𝐺)
2 ulmcl 25540 . . 3 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
31, 2syl 17 . 2 (𝜑𝐺:𝑆⟶ℂ)
4 ulmcn.z . . . . 5 𝑍 = (ℤ𝑀)
5 ulmcn.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
65adantr 481 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → 𝑀 ∈ ℤ)
7 ulmcn.f . . . . . . 7 (𝜑𝐹:𝑍⟶(𝑆cn→ℂ))
8 cncff 24056 . . . . . . . . 9 (𝑥 ∈ (𝑆cn→ℂ) → 𝑥:𝑆⟶ℂ)
9 cnex 10952 . . . . . . . . . 10 ℂ ∈ V
10 cncfrss 24054 . . . . . . . . . . 11 (𝑥 ∈ (𝑆cn→ℂ) → 𝑆 ⊆ ℂ)
11 ssexg 5247 . . . . . . . . . . 11 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
1210, 9, 11sylancl 586 . . . . . . . . . 10 (𝑥 ∈ (𝑆cn→ℂ) → 𝑆 ∈ V)
13 elmapg 8628 . . . . . . . . . 10 ((ℂ ∈ V ∧ 𝑆 ∈ V) → (𝑥 ∈ (ℂ ↑m 𝑆) ↔ 𝑥:𝑆⟶ℂ))
149, 12, 13sylancr 587 . . . . . . . . 9 (𝑥 ∈ (𝑆cn→ℂ) → (𝑥 ∈ (ℂ ↑m 𝑆) ↔ 𝑥:𝑆⟶ℂ))
158, 14mpbird 256 . . . . . . . 8 (𝑥 ∈ (𝑆cn→ℂ) → 𝑥 ∈ (ℂ ↑m 𝑆))
1615ssriv 3925 . . . . . . 7 (𝑆cn→ℂ) ⊆ (ℂ ↑m 𝑆)
17 fss 6617 . . . . . . 7 ((𝐹:𝑍⟶(𝑆cn→ℂ) ∧ (𝑆cn→ℂ) ⊆ (ℂ ↑m 𝑆)) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
187, 16, 17sylancl 586 . . . . . 6 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
1918adantr 481 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
20 eqidd 2739 . . . . 5 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ (𝑘𝑍𝑤𝑆)) → ((𝐹𝑘)‘𝑤) = ((𝐹𝑘)‘𝑤))
21 eqidd 2739 . . . . 5 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑤𝑆) → (𝐺𝑤) = (𝐺𝑤))
221adantr 481 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → 𝐹(⇝𝑢𝑆)𝐺)
23 rphalfcl 12757 . . . . . . 7 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
2423ad2antll 726 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → (𝑦 / 2) ∈ ℝ+)
2524rphalfcld 12784 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → ((𝑦 / 2) / 2) ∈ ℝ+)
264, 6, 19, 20, 21, 22, 25ulmi 25545 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2))
274r19.2uz 15063 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ∃𝑘𝑍𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2))
28 simplrl 774 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → 𝑥𝑆)
29 fveq2 6774 . . . . . . . . . . . 12 (𝑤 = 𝑥 → ((𝐹𝑘)‘𝑤) = ((𝐹𝑘)‘𝑥))
30 fveq2 6774 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (𝐺𝑤) = (𝐺𝑥))
3129, 30oveq12d 7293 . . . . . . . . . . 11 (𝑤 = 𝑥 → (((𝐹𝑘)‘𝑤) − (𝐺𝑤)) = (((𝐹𝑘)‘𝑥) − (𝐺𝑥)))
3231fveq2d 6778 . . . . . . . . . 10 (𝑤 = 𝑥 → (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) = (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))))
3332breq1d 5084 . . . . . . . . 9 (𝑤 = 𝑥 → ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ↔ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)))
3433rspcv 3557 . . . . . . . 8 (𝑥𝑆 → (∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)))
3528, 34syl 17 . . . . . . 7 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → (∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)))
367adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → 𝐹:𝑍⟶(𝑆cn→ℂ))
3736ffvelrnda 6961 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ (𝑆cn→ℂ))
3824adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → (𝑦 / 2) ∈ ℝ+)
39 cncfi 24057 . . . . . . . . . . 11 (((𝐹𝑘) ∈ (𝑆cn→ℂ) ∧ 𝑥𝑆 ∧ (𝑦 / 2) ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)))
4037, 28, 38, 39syl3anc 1370 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)))
4140ad2antrr 723 . . . . . . . . 9 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ ∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)))
42 r19.26 3095 . . . . . . . . . . . . 13 (∀𝑤𝑆 ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2))) ↔ (∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ∧ ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2))))
4319ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
44 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝑘𝑍)
4543, 44ffvelrnd 6962 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
46 elmapi 8637 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹𝑘):𝑆⟶ℂ)
4745, 46syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝐹𝑘):𝑆⟶ℂ)
4828adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝑥𝑆)
4947, 48ffvelrnd 6962 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝐹𝑘)‘𝑥) ∈ ℂ)
503ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝐺:𝑆⟶ℂ)
5150, 48ffvelrnd 6962 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝐺𝑥) ∈ ℂ)
5249, 51subcld 11332 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((𝐹𝑘)‘𝑥) − (𝐺𝑥)) ∈ ℂ)
5352abscld 15148 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) ∈ ℝ)
54 ffvelrn 6959 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐹𝑘):𝑆⟶ℂ ∧ 𝑤𝑆) → ((𝐹𝑘)‘𝑤) ∈ ℂ)
5547, 54sylancom 588 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝐹𝑘)‘𝑤) ∈ ℂ)
56 ffvelrn 6959 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺:𝑆⟶ℂ ∧ 𝑤𝑆) → (𝐺𝑤) ∈ ℂ)
5750, 56sylancom 588 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝐺𝑤) ∈ ℂ)
5855, 57subcld 11332 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((𝐹𝑘)‘𝑤) − (𝐺𝑤)) ∈ ℂ)
5958abscld 15148 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) ∈ ℝ)
6038adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝑦 / 2) ∈ ℝ+)
6160rphalfcld 12784 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝑦 / 2) / 2) ∈ ℝ+)
6261rpred 12772 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝑦 / 2) / 2) ∈ ℝ)
63 lt2add 11460 . . . . . . . . . . . . . . . . . . . . 21 ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) ∈ ℝ ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) ∈ ℝ) ∧ (((𝑦 / 2) / 2) ∈ ℝ ∧ ((𝑦 / 2) / 2) ∈ ℝ)) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (((𝑦 / 2) / 2) + ((𝑦 / 2) / 2))))
6453, 59, 62, 62, 63syl22anc 836 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (((𝑦 / 2) / 2) + ((𝑦 / 2) / 2))))
6560rpred 12772 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝑦 / 2) ∈ ℝ)
6665recnd 11003 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝑦 / 2) ∈ ℂ)
67662halvesd 12219 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((𝑦 / 2) / 2) + ((𝑦 / 2) / 2)) = (𝑦 / 2))
6867breq2d 5086 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (((𝑦 / 2) / 2) + ((𝑦 / 2) / 2)) ↔ ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (𝑦 / 2)))
6953, 59readdcld 11004 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) ∈ ℝ)
7055, 49subcld 11332 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)) ∈ ℂ)
7170abscld 15148 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) ∈ ℝ)
72 lt2add 11460 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) ∈ ℝ ∧ (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) ∈ ℝ) ∧ ((𝑦 / 2) ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ)) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (𝑦 / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < ((𝑦 / 2) + (𝑦 / 2))))
7369, 71, 65, 65, 72syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (𝑦 / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < ((𝑦 / 2) + (𝑦 / 2))))
74 rpre 12738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
7574ad2antll 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → 𝑦 ∈ ℝ)
7675ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝑦 ∈ ℝ)
7776recnd 11003 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝑦 ∈ ℂ)
78772halvesd 12219 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝑦 / 2) + (𝑦 / 2)) = 𝑦)
7978breq2d 5086 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < ((𝑦 / 2) + (𝑦 / 2)) ↔ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < 𝑦))
8057, 51subcld 11332 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝐺𝑤) − (𝐺𝑥)) ∈ ℂ)
8180abscld 15148 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − (𝐺𝑥))) ∈ ℝ)
8257, 49subcld 11332 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝐺𝑤) − ((𝐹𝑘)‘𝑥)) ∈ ℂ)
8382abscld 15148 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) ∈ ℝ)
8453, 83readdcld 11004 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥)))) ∈ ℝ)
8569, 71readdcld 11004 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) ∈ ℝ)
8657, 51, 49abs3difd 15172 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − (𝐺𝑥))) ≤ ((abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) + (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥)))))
8783recnd 11003 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) ∈ ℂ)
8853recnd 11003 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) ∈ ℂ)
8987, 88addcomd 11177 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) + (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥)))) = ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥)))))
9086, 89breqtrd 5100 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − (𝐺𝑥))) ≤ ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥)))))
9159, 71readdcld 11004 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) ∈ ℝ)
9257, 49, 55abs3difd 15172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) ≤ ((abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))))
9357, 55abssubd 15165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑤))) = (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))))
9493oveq1d 7290 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) = ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))))
9592, 94breqtrd 5100 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) ≤ ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))))
9683, 91, 53, 95leadd2dd 11590 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥)))) ≤ ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))))))
9759recnd 11003 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) ∈ ℂ)
9871recnd 11003 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) ∈ ℂ)
9988, 97, 98addassd 10997 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) = ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))))))
10096, 99breqtrrd 5102 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥)))) ≤ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))))
10181, 84, 85, 90, 100letrd 11132 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − (𝐺𝑥))) ≤ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))))
102 lelttr 11065 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((abs‘((𝐺𝑤) − (𝐺𝑥))) ∈ ℝ ∧ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((abs‘((𝐺𝑤) − (𝐺𝑥))) ≤ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) ∧ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < 𝑦) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
10381, 85, 76, 102syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘((𝐺𝑤) − (𝐺𝑥))) ≤ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) ∧ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < 𝑦) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
104101, 103mpand 692 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < 𝑦 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
10579, 104sylbid 239 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < ((𝑦 / 2) + (𝑦 / 2)) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
10673, 105syld 47 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (𝑦 / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
107106expd 416 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (𝑦 / 2) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
10868, 107sylbid 239 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (((𝑦 / 2) / 2) + ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
10964, 108syld 47 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
110109expdimp 453 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
111110an32s 649 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
112111imp 407 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) ∧ 𝑤𝑆) ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
113112imim2d 57 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) ∧ 𝑤𝑆) ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → (((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
114113expimpd 454 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2))) → ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
115114ralimdva 3108 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → (∀𝑤𝑆 ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2))) → ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
11642, 115syl5bir 242 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → ((∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ∧ ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2))) → ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
117116expdimp 453 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) ∧ ∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → (∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
118117an32s 649 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ ∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → (∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
119118reximdv 3202 . . . . . . . . 9 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ ∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → (∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
12041, 119mpd 15 . . . . . . . 8 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ ∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
121120exp31 420 . . . . . . 7 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → (∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))))
12235, 121mpdd 43 . . . . . 6 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → (∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
123122rexlimdva 3213 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → (∃𝑘𝑍𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
12427, 123syl5 34 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
12526, 124mpd 15 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
126125ralrimivva 3123 . 2 (𝜑 → ∀𝑥𝑆𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
127 uzid 12597 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
1285, 127syl 17 . . . . . 6 (𝜑𝑀 ∈ (ℤ𝑀))
129128, 4eleqtrrdi 2850 . . . . 5 (𝜑𝑀𝑍)
1307, 129ffvelrnd 6962 . . . 4 (𝜑 → (𝐹𝑀) ∈ (𝑆cn→ℂ))
131 cncfrss 24054 . . . 4 ((𝐹𝑀) ∈ (𝑆cn→ℂ) → 𝑆 ⊆ ℂ)
132130, 131syl 17 . . 3 (𝜑𝑆 ⊆ ℂ)
133 ssid 3943 . . 3 ℂ ⊆ ℂ
134 elcncf2 24053 . . 3 ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐺 ∈ (𝑆cn→ℂ) ↔ (𝐺:𝑆⟶ℂ ∧ ∀𝑥𝑆𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))))
135132, 133, 134sylancl 586 . 2 (𝜑 → (𝐺 ∈ (𝑆cn→ℂ) ↔ (𝐺:𝑆⟶ℂ ∧ ∀𝑥𝑆𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))))
1363, 126, 135mpbir2and 710 1 (𝜑𝐺 ∈ (𝑆cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  wss 3887   class class class wbr 5074  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  cc 10869  cr 10870   + caddc 10874   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  2c2 12028  cz 12319  cuz 12582  +crp 12730  abscabs 14945  cnccncf 24039  𝑢culm 25535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-cncf 24041  df-ulm 25536
This theorem is referenced by:  psercn2  25582  knoppcn  34684
  Copyright terms: Public domain W3C validator