MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmcn Structured version   Visualization version   GIF version

Theorem ulmcn 26308
Description: A uniform limit of continuous functions is continuous. (Contributed by Mario Carneiro, 27-Feb-2015.)
Hypotheses
Ref Expression
ulmcn.z 𝑍 = (ℤ𝑀)
ulmcn.m (𝜑𝑀 ∈ ℤ)
ulmcn.f (𝜑𝐹:𝑍⟶(𝑆cn→ℂ))
ulmcn.u (𝜑𝐹(⇝𝑢𝑆)𝐺)
Assertion
Ref Expression
ulmcn (𝜑𝐺 ∈ (𝑆cn→ℂ))

Proof of Theorem ulmcn
Dummy variables 𝑗 𝑘 𝑤 𝑧 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmcn.u . . 3 (𝜑𝐹(⇝𝑢𝑆)𝐺)
2 ulmcl 26290 . . 3 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
31, 2syl 17 . 2 (𝜑𝐺:𝑆⟶ℂ)
4 ulmcn.z . . . . 5 𝑍 = (ℤ𝑀)
5 ulmcn.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
65adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → 𝑀 ∈ ℤ)
7 ulmcn.f . . . . . . 7 (𝜑𝐹:𝑍⟶(𝑆cn→ℂ))
8 cncff 24786 . . . . . . . . 9 (𝑥 ∈ (𝑆cn→ℂ) → 𝑥:𝑆⟶ℂ)
9 cnex 11149 . . . . . . . . . 10 ℂ ∈ V
10 cncfrss 24784 . . . . . . . . . . 11 (𝑥 ∈ (𝑆cn→ℂ) → 𝑆 ⊆ ℂ)
11 ssexg 5278 . . . . . . . . . . 11 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
1210, 9, 11sylancl 586 . . . . . . . . . 10 (𝑥 ∈ (𝑆cn→ℂ) → 𝑆 ∈ V)
13 elmapg 8812 . . . . . . . . . 10 ((ℂ ∈ V ∧ 𝑆 ∈ V) → (𝑥 ∈ (ℂ ↑m 𝑆) ↔ 𝑥:𝑆⟶ℂ))
149, 12, 13sylancr 587 . . . . . . . . 9 (𝑥 ∈ (𝑆cn→ℂ) → (𝑥 ∈ (ℂ ↑m 𝑆) ↔ 𝑥:𝑆⟶ℂ))
158, 14mpbird 257 . . . . . . . 8 (𝑥 ∈ (𝑆cn→ℂ) → 𝑥 ∈ (ℂ ↑m 𝑆))
1615ssriv 3950 . . . . . . 7 (𝑆cn→ℂ) ⊆ (ℂ ↑m 𝑆)
17 fss 6704 . . . . . . 7 ((𝐹:𝑍⟶(𝑆cn→ℂ) ∧ (𝑆cn→ℂ) ⊆ (ℂ ↑m 𝑆)) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
187, 16, 17sylancl 586 . . . . . 6 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
1918adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
20 eqidd 2730 . . . . 5 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ (𝑘𝑍𝑤𝑆)) → ((𝐹𝑘)‘𝑤) = ((𝐹𝑘)‘𝑤))
21 eqidd 2730 . . . . 5 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑤𝑆) → (𝐺𝑤) = (𝐺𝑤))
221adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → 𝐹(⇝𝑢𝑆)𝐺)
23 rphalfcl 12980 . . . . . . 7 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
2423ad2antll 729 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → (𝑦 / 2) ∈ ℝ+)
2524rphalfcld 13007 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → ((𝑦 / 2) / 2) ∈ ℝ+)
264, 6, 19, 20, 21, 22, 25ulmi 26295 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2))
274r19.2uz 15318 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ∃𝑘𝑍𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2))
28 simplrl 776 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → 𝑥𝑆)
29 fveq2 6858 . . . . . . . . . . . 12 (𝑤 = 𝑥 → ((𝐹𝑘)‘𝑤) = ((𝐹𝑘)‘𝑥))
30 fveq2 6858 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (𝐺𝑤) = (𝐺𝑥))
3129, 30oveq12d 7405 . . . . . . . . . . 11 (𝑤 = 𝑥 → (((𝐹𝑘)‘𝑤) − (𝐺𝑤)) = (((𝐹𝑘)‘𝑥) − (𝐺𝑥)))
3231fveq2d 6862 . . . . . . . . . 10 (𝑤 = 𝑥 → (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) = (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))))
3332breq1d 5117 . . . . . . . . 9 (𝑤 = 𝑥 → ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ↔ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)))
3433rspcv 3584 . . . . . . . 8 (𝑥𝑆 → (∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)))
3528, 34syl 17 . . . . . . 7 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → (∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)))
367adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → 𝐹:𝑍⟶(𝑆cn→ℂ))
3736ffvelcdmda 7056 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ (𝑆cn→ℂ))
3824adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → (𝑦 / 2) ∈ ℝ+)
39 cncfi 24787 . . . . . . . . . . 11 (((𝐹𝑘) ∈ (𝑆cn→ℂ) ∧ 𝑥𝑆 ∧ (𝑦 / 2) ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)))
4037, 28, 38, 39syl3anc 1373 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)))
4140ad2antrr 726 . . . . . . . . 9 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ ∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)))
42 r19.26 3091 . . . . . . . . . . . . 13 (∀𝑤𝑆 ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2))) ↔ (∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ∧ ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2))))
4319ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
44 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝑘𝑍)
4543, 44ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
46 elmapi 8822 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹𝑘):𝑆⟶ℂ)
4745, 46syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝐹𝑘):𝑆⟶ℂ)
4828adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝑥𝑆)
4947, 48ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝐹𝑘)‘𝑥) ∈ ℂ)
503ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝐺:𝑆⟶ℂ)
5150, 48ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝐺𝑥) ∈ ℂ)
5249, 51subcld 11533 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((𝐹𝑘)‘𝑥) − (𝐺𝑥)) ∈ ℂ)
5352abscld 15405 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) ∈ ℝ)
54 ffvelcdm 7053 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐹𝑘):𝑆⟶ℂ ∧ 𝑤𝑆) → ((𝐹𝑘)‘𝑤) ∈ ℂ)
5547, 54sylancom 588 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝐹𝑘)‘𝑤) ∈ ℂ)
56 ffvelcdm 7053 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺:𝑆⟶ℂ ∧ 𝑤𝑆) → (𝐺𝑤) ∈ ℂ)
5750, 56sylancom 588 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝐺𝑤) ∈ ℂ)
5855, 57subcld 11533 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((𝐹𝑘)‘𝑤) − (𝐺𝑤)) ∈ ℂ)
5958abscld 15405 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) ∈ ℝ)
6038adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝑦 / 2) ∈ ℝ+)
6160rphalfcld 13007 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝑦 / 2) / 2) ∈ ℝ+)
6261rpred 12995 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝑦 / 2) / 2) ∈ ℝ)
63 lt2add 11663 . . . . . . . . . . . . . . . . . . . . 21 ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) ∈ ℝ ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) ∈ ℝ) ∧ (((𝑦 / 2) / 2) ∈ ℝ ∧ ((𝑦 / 2) / 2) ∈ ℝ)) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (((𝑦 / 2) / 2) + ((𝑦 / 2) / 2))))
6453, 59, 62, 62, 63syl22anc 838 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (((𝑦 / 2) / 2) + ((𝑦 / 2) / 2))))
6560rpred 12995 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝑦 / 2) ∈ ℝ)
6665recnd 11202 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝑦 / 2) ∈ ℂ)
67662halvesd 12428 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((𝑦 / 2) / 2) + ((𝑦 / 2) / 2)) = (𝑦 / 2))
6867breq2d 5119 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (((𝑦 / 2) / 2) + ((𝑦 / 2) / 2)) ↔ ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (𝑦 / 2)))
6953, 59readdcld 11203 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) ∈ ℝ)
7055, 49subcld 11533 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)) ∈ ℂ)
7170abscld 15405 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) ∈ ℝ)
72 lt2add 11663 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) ∈ ℝ ∧ (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) ∈ ℝ) ∧ ((𝑦 / 2) ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ)) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (𝑦 / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < ((𝑦 / 2) + (𝑦 / 2))))
7369, 71, 65, 65, 72syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (𝑦 / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < ((𝑦 / 2) + (𝑦 / 2))))
74 rpre 12960 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
7574ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → 𝑦 ∈ ℝ)
7675ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝑦 ∈ ℝ)
7776recnd 11202 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝑦 ∈ ℂ)
78772halvesd 12428 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝑦 / 2) + (𝑦 / 2)) = 𝑦)
7978breq2d 5119 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < ((𝑦 / 2) + (𝑦 / 2)) ↔ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < 𝑦))
8057, 51subcld 11533 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝐺𝑤) − (𝐺𝑥)) ∈ ℂ)
8180abscld 15405 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − (𝐺𝑥))) ∈ ℝ)
8257, 49subcld 11533 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝐺𝑤) − ((𝐹𝑘)‘𝑥)) ∈ ℂ)
8382abscld 15405 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) ∈ ℝ)
8453, 83readdcld 11203 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥)))) ∈ ℝ)
8569, 71readdcld 11203 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) ∈ ℝ)
8657, 51, 49abs3difd 15429 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − (𝐺𝑥))) ≤ ((abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) + (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥)))))
8783recnd 11202 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) ∈ ℂ)
8853recnd 11202 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) ∈ ℂ)
8987, 88addcomd 11376 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) + (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥)))) = ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥)))))
9086, 89breqtrd 5133 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − (𝐺𝑥))) ≤ ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥)))))
9159, 71readdcld 11203 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) ∈ ℝ)
9257, 49, 55abs3difd 15429 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) ≤ ((abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))))
9357, 55abssubd 15422 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑤))) = (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))))
9493oveq1d 7402 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) = ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))))
9592, 94breqtrd 5133 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) ≤ ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))))
9683, 91, 53, 95leadd2dd 11793 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥)))) ≤ ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))))))
9759recnd 11202 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) ∈ ℂ)
9871recnd 11202 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) ∈ ℂ)
9988, 97, 98addassd 11196 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) = ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))))))
10096, 99breqtrrd 5135 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥)))) ≤ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))))
10181, 84, 85, 90, 100letrd 11331 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − (𝐺𝑥))) ≤ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))))
102 lelttr 11264 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((abs‘((𝐺𝑤) − (𝐺𝑥))) ∈ ℝ ∧ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((abs‘((𝐺𝑤) − (𝐺𝑥))) ≤ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) ∧ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < 𝑦) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
10381, 85, 76, 102syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘((𝐺𝑤) − (𝐺𝑥))) ≤ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) ∧ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < 𝑦) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
104101, 103mpand 695 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < 𝑦 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
10579, 104sylbid 240 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < ((𝑦 / 2) + (𝑦 / 2)) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
10673, 105syld 47 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (𝑦 / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
107106expd 415 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (𝑦 / 2) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
10868, 107sylbid 240 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (((𝑦 / 2) / 2) + ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
10964, 108syld 47 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
110109expdimp 452 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
111110an32s 652 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
112111imp 406 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) ∧ 𝑤𝑆) ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
113112imim2d 57 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) ∧ 𝑤𝑆) ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → (((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
114113expimpd 453 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2))) → ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
115114ralimdva 3145 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → (∀𝑤𝑆 ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2))) → ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
11642, 115biimtrrid 243 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → ((∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ∧ ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2))) → ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
117116expdimp 452 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) ∧ ∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → (∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
118117an32s 652 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ ∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → (∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
119118reximdv 3148 . . . . . . . . 9 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ ∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → (∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
12041, 119mpd 15 . . . . . . . 8 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ ∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
121120exp31 419 . . . . . . 7 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → (∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))))
12235, 121mpdd 43 . . . . . 6 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → (∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
123122rexlimdva 3134 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → (∃𝑘𝑍𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
12427, 123syl5 34 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
12526, 124mpd 15 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
126125ralrimivva 3180 . 2 (𝜑 → ∀𝑥𝑆𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
127 uzid 12808 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
1285, 127syl 17 . . . . . 6 (𝜑𝑀 ∈ (ℤ𝑀))
129128, 4eleqtrrdi 2839 . . . . 5 (𝜑𝑀𝑍)
1307, 129ffvelcdmd 7057 . . . 4 (𝜑 → (𝐹𝑀) ∈ (𝑆cn→ℂ))
131 cncfrss 24784 . . . 4 ((𝐹𝑀) ∈ (𝑆cn→ℂ) → 𝑆 ⊆ ℂ)
132130, 131syl 17 . . 3 (𝜑𝑆 ⊆ ℂ)
133 ssid 3969 . . 3 ℂ ⊆ ℂ
134 elcncf2 24783 . . 3 ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐺 ∈ (𝑆cn→ℂ) ↔ (𝐺:𝑆⟶ℂ ∧ ∀𝑥𝑆𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))))
135132, 133, 134sylancl 586 . 2 (𝜑 → (𝐺 ∈ (𝑆cn→ℂ) ↔ (𝐺:𝑆⟶ℂ ∧ ∀𝑥𝑆𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))))
1363, 126, 135mpbir2and 713 1 (𝜑𝐺 ∈ (𝑆cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  wss 3914   class class class wbr 5107  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  cc 11066  cr 11067   + caddc 11071   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  2c2 12241  cz 12529  cuz 12793  +crp 12951  abscabs 15200  cnccncf 24769  𝑢culm 26285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-cncf 24771  df-ulm 26286
This theorem is referenced by:  psercn2  26332  psercn2OLD  26333  knoppcn  36492
  Copyright terms: Public domain W3C validator