![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > addcncff | Structured version Visualization version GIF version |
Description: The sum of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
addcncff.f | β’ (π β πΉ β (πβcnββ)) |
addcncff.g | β’ (π β πΊ β (πβcnββ)) |
Ref | Expression |
---|---|
addcncff | β’ (π β (πΉ βf + πΊ) β (πβcnββ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcncff.f | . . . 4 β’ (π β πΉ β (πβcnββ)) | |
2 | cncfrss 24631 | . . . 4 β’ (πΉ β (πβcnββ) β π β β) | |
3 | cnex 11193 | . . . . 5 β’ β β V | |
4 | 3 | ssex 5320 | . . . 4 β’ (π β β β π β V) |
5 | 1, 2, 4 | 3syl 18 | . . 3 β’ (π β π β V) |
6 | cncff 24633 | . . . . 5 β’ (πΉ β (πβcnββ) β πΉ:πβΆβ) | |
7 | 1, 6 | syl 17 | . . . 4 β’ (π β πΉ:πβΆβ) |
8 | 7 | ffvelcdmda 7085 | . . 3 β’ ((π β§ π₯ β π) β (πΉβπ₯) β β) |
9 | addcncff.g | . . . . 5 β’ (π β πΊ β (πβcnββ)) | |
10 | cncff 24633 | . . . . 5 β’ (πΊ β (πβcnββ) β πΊ:πβΆβ) | |
11 | 9, 10 | syl 17 | . . . 4 β’ (π β πΊ:πβΆβ) |
12 | 11 | ffvelcdmda 7085 | . . 3 β’ ((π β§ π₯ β π) β (πΊβπ₯) β β) |
13 | 7 | feqmptd 6959 | . . 3 β’ (π β πΉ = (π₯ β π β¦ (πΉβπ₯))) |
14 | 11 | feqmptd 6959 | . . 3 β’ (π β πΊ = (π₯ β π β¦ (πΊβπ₯))) |
15 | 5, 8, 12, 13, 14 | offval2 7692 | . 2 β’ (π β (πΉ βf + πΊ) = (π₯ β π β¦ ((πΉβπ₯) + (πΊβπ₯)))) |
16 | 13, 1 | eqeltrrd 2832 | . . 3 β’ (π β (π₯ β π β¦ (πΉβπ₯)) β (πβcnββ)) |
17 | 14, 9 | eqeltrrd 2832 | . . 3 β’ (π β (π₯ β π β¦ (πΊβπ₯)) β (πβcnββ)) |
18 | 16, 17 | addcncf 25192 | . 2 β’ (π β (π₯ β π β¦ ((πΉβπ₯) + (πΊβπ₯))) β (πβcnββ)) |
19 | 15, 18 | eqeltrd 2831 | 1 β’ (π β (πΉ βf + πΊ) β (πβcnββ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2104 Vcvv 3472 β wss 3947 β¦ cmpt 5230 βΆwf 6538 βcfv 6542 (class class class)co 7411 βf cof 7670 βcc 11110 + caddc 11115 βcnβccncf 24616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-er 8705 df-map 8824 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-fi 9408 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12979 df-xneg 13096 df-xadd 13097 df-xmul 13098 df-icc 13335 df-fz 13489 df-fzo 13632 df-seq 13971 df-exp 14032 df-hash 14295 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-starv 17216 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-hom 17225 df-cco 17226 df-rest 17372 df-topn 17373 df-0g 17391 df-gsum 17392 df-topgen 17393 df-pt 17394 df-prds 17397 df-xrs 17452 df-qtop 17457 df-imas 17458 df-xps 17460 df-mre 17534 df-mrc 17535 df-acs 17537 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-mulg 18987 df-cntz 19222 df-cmn 19691 df-psmet 21136 df-xmet 21137 df-met 21138 df-bl 21139 df-mopn 21140 df-cnfld 21145 df-top 22616 df-topon 22633 df-topsp 22655 df-bases 22669 df-cn 22951 df-cnp 22952 df-tx 23286 df-hmeo 23479 df-xms 24046 df-ms 24047 df-tms 24048 df-cncf 24618 |
This theorem is referenced by: dvmulcncf 44939 |
Copyright terms: Public domain | W3C validator |