Step | Hyp | Ref
| Expression |
1 | | icocncflimc.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ ((𝐴[,)𝐵)–cn→ℂ)) |
2 | | icocncflimc.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 2 | rexrd 11025 |
. . . 4
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
4 | | icocncflimc.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
5 | 2 | leidd 11541 |
. . . 4
⊢ (𝜑 → 𝐴 ≤ 𝐴) |
6 | | icocncflimc.altb |
. . . 4
⊢ (𝜑 → 𝐴 < 𝐵) |
7 | 3, 4, 3, 5, 6 | elicod 13129 |
. . 3
⊢ (𝜑 → 𝐴 ∈ (𝐴[,)𝐵)) |
8 | 1, 7 | cnlimci 25053 |
. 2
⊢ (𝜑 → (𝐹‘𝐴) ∈ (𝐹 limℂ 𝐴)) |
9 | | cncfrss 24054 |
. . . . . . . 8
⊢ (𝐹 ∈ ((𝐴[,)𝐵)–cn→ℂ) → (𝐴[,)𝐵) ⊆ ℂ) |
10 | 1, 9 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐴[,)𝐵) ⊆ ℂ) |
11 | | ssid 3943 |
. . . . . . 7
⊢ ℂ
⊆ ℂ |
12 | | eqid 2738 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
13 | | eqid 2738 |
. . . . . . . 8
⊢
((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) = ((TopOpen‘ℂfld)
↾t (𝐴[,)𝐵)) |
14 | | eqid 2738 |
. . . . . . . 8
⊢
((TopOpen‘ℂfld) ↾t ℂ) =
((TopOpen‘ℂfld) ↾t
ℂ) |
15 | 12, 13, 14 | cncfcn 24073 |
. . . . . . 7
⊢ (((𝐴[,)𝐵) ⊆ ℂ ∧ ℂ ⊆
ℂ) → ((𝐴[,)𝐵)–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) Cn ((TopOpen‘ℂfld)
↾t ℂ))) |
16 | 10, 11, 15 | sylancl 586 |
. . . . . 6
⊢ (𝜑 → ((𝐴[,)𝐵)–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) Cn ((TopOpen‘ℂfld)
↾t ℂ))) |
17 | 1, 16 | eleqtrd 2841 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈
(((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) Cn ((TopOpen‘ℂfld)
↾t ℂ))) |
18 | 12 | cnfldtopon 23946 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
19 | 18 | a1i 11 |
. . . . . . 7
⊢ (𝜑 →
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ)) |
20 | | resttopon 22312 |
. . . . . . 7
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ (𝐴[,)𝐵) ⊆ ℂ) →
((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ∈ (TopOn‘(𝐴[,)𝐵))) |
21 | 19, 10, 20 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ∈ (TopOn‘(𝐴[,)𝐵))) |
22 | 12 | cnfldtop 23947 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) ∈ Top |
23 | | unicntop 23949 |
. . . . . . . . 9
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
24 | 23 | restid 17144 |
. . . . . . . 8
⊢
((TopOpen‘ℂfld) ∈ Top →
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld)) |
25 | 22, 24 | ax-mp 5 |
. . . . . . 7
⊢
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld) |
26 | 25 | cnfldtopon 23946 |
. . . . . 6
⊢
((TopOpen‘ℂfld) ↾t ℂ)
∈ (TopOn‘ℂ) |
27 | | cncnp 22431 |
. . . . . 6
⊢
((((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ∈ (TopOn‘(𝐴[,)𝐵)) ∧
((TopOpen‘ℂfld) ↾t ℂ) ∈
(TopOn‘ℂ)) → (𝐹 ∈
(((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) Cn ((TopOpen‘ℂfld)
↾t ℂ)) ↔ (𝐹:(𝐴[,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴[,)𝐵)𝐹 ∈
((((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) CnP
((TopOpen‘ℂfld) ↾t
ℂ))‘𝑥)))) |
28 | 21, 26, 27 | sylancl 586 |
. . . . 5
⊢ (𝜑 → (𝐹 ∈
(((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) Cn ((TopOpen‘ℂfld)
↾t ℂ)) ↔ (𝐹:(𝐴[,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴[,)𝐵)𝐹 ∈
((((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) CnP
((TopOpen‘ℂfld) ↾t
ℂ))‘𝑥)))) |
29 | 17, 28 | mpbid 231 |
. . . 4
⊢ (𝜑 → (𝐹:(𝐴[,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴[,)𝐵)𝐹 ∈
((((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) CnP
((TopOpen‘ℂfld) ↾t
ℂ))‘𝑥))) |
30 | 29 | simpld 495 |
. . 3
⊢ (𝜑 → 𝐹:(𝐴[,)𝐵)⟶ℂ) |
31 | | ioossico 13170 |
. . . 4
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵) |
32 | 31 | a1i 11 |
. . 3
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵)) |
33 | | eqid 2738 |
. . 3
⊢
((TopOpen‘ℂfld) ↾t ((𝐴[,)𝐵) ∪ {𝐴})) = ((TopOpen‘ℂfld)
↾t ((𝐴[,)𝐵) ∪ {𝐴})) |
34 | 2 | recnd 11003 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℂ) |
35 | 23 | ntrtop 22221 |
. . . . . . . . 9
⊢
((TopOpen‘ℂfld) ∈ Top →
((int‘(TopOpen‘ℂfld))‘ℂ) =
ℂ) |
36 | 22, 35 | ax-mp 5 |
. . . . . . . 8
⊢
((int‘(TopOpen‘ℂfld))‘ℂ) =
ℂ |
37 | | undif 4415 |
. . . . . . . . . . 11
⊢ ((𝐴[,)𝐵) ⊆ ℂ ↔ ((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵))) = ℂ) |
38 | 10, 37 | sylib 217 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵))) = ℂ) |
39 | 38 | eqcomd 2744 |
. . . . . . . . 9
⊢ (𝜑 → ℂ = ((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵)))) |
40 | 39 | fveq2d 6778 |
. . . . . . . 8
⊢ (𝜑 →
((int‘(TopOpen‘ℂfld))‘ℂ) =
((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵))))) |
41 | 36, 40 | eqtr3id 2792 |
. . . . . . 7
⊢ (𝜑 → ℂ =
((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵))))) |
42 | 34, 41 | eleqtrd 2841 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈
((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵))))) |
43 | 42, 7 | elind 4128 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈
(((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵)))) ∩ (𝐴[,)𝐵))) |
44 | 22 | a1i 11 |
. . . . . 6
⊢ (𝜑 →
(TopOpen‘ℂfld) ∈ Top) |
45 | | ssid 3943 |
. . . . . . 7
⊢ (𝐴[,)𝐵) ⊆ (𝐴[,)𝐵) |
46 | 45 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝐴[,)𝐵) ⊆ (𝐴[,)𝐵)) |
47 | 23, 13 | restntr 22333 |
. . . . . 6
⊢
(((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,)𝐵) ⊆ ℂ ∧ (𝐴[,)𝐵) ⊆ (𝐴[,)𝐵)) →
((int‘((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))‘(𝐴[,)𝐵)) =
(((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵)))) ∩ (𝐴[,)𝐵))) |
48 | 44, 10, 46, 47 | syl3anc 1370 |
. . . . 5
⊢ (𝜑 →
((int‘((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))‘(𝐴[,)𝐵)) =
(((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵)))) ∩ (𝐴[,)𝐵))) |
49 | 43, 48 | eleqtrrd 2842 |
. . . 4
⊢ (𝜑 → 𝐴 ∈
((int‘((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))‘(𝐴[,)𝐵))) |
50 | 7 | snssd 4742 |
. . . . . . . . 9
⊢ (𝜑 → {𝐴} ⊆ (𝐴[,)𝐵)) |
51 | | ssequn2 4117 |
. . . . . . . . 9
⊢ ({𝐴} ⊆ (𝐴[,)𝐵) ↔ ((𝐴[,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵)) |
52 | 50, 51 | sylib 217 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴[,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵)) |
53 | 52 | eqcomd 2744 |
. . . . . . 7
⊢ (𝜑 → (𝐴[,)𝐵) = ((𝐴[,)𝐵) ∪ {𝐴})) |
54 | 53 | oveq2d 7291 |
. . . . . 6
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) = ((TopOpen‘ℂfld)
↾t ((𝐴[,)𝐵) ∪ {𝐴}))) |
55 | 54 | fveq2d 6778 |
. . . . 5
⊢ (𝜑 →
(int‘((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵))) =
(int‘((TopOpen‘ℂfld) ↾t ((𝐴[,)𝐵) ∪ {𝐴})))) |
56 | | snunioo1 43050 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵)) |
57 | 3, 4, 6, 56 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵)) |
58 | 57 | eqcomd 2744 |
. . . . 5
⊢ (𝜑 → (𝐴[,)𝐵) = ((𝐴(,)𝐵) ∪ {𝐴})) |
59 | 55, 58 | fveq12d 6781 |
. . . 4
⊢ (𝜑 →
((int‘((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))‘(𝐴[,)𝐵)) =
((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,)𝐵) ∪ {𝐴})))‘((𝐴(,)𝐵) ∪ {𝐴}))) |
60 | 49, 59 | eleqtrd 2841 |
. . 3
⊢ (𝜑 → 𝐴 ∈
((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,)𝐵) ∪ {𝐴})))‘((𝐴(,)𝐵) ∪ {𝐴}))) |
61 | 30, 32, 10, 12, 33, 60 | limcres 25050 |
. 2
⊢ (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) limℂ 𝐴) = (𝐹 limℂ 𝐴)) |
62 | 8, 61 | eleqtrrd 2842 |
1
⊢ (𝜑 → (𝐹‘𝐴) ∈ ((𝐹 ↾ (𝐴(,)𝐵)) limℂ 𝐴)) |