Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icocncflimc Structured version   Visualization version   GIF version

Theorem icocncflimc 40621
Description: Limit at the lower bound, of a continuous function defined on a left closed right open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
icocncflimc.a (𝜑𝐴 ∈ ℝ)
icocncflimc.b (𝜑𝐵 ∈ ℝ*)
icocncflimc.altb (𝜑𝐴 < 𝐵)
icocncflimc.f (𝜑𝐹 ∈ ((𝐴[,)𝐵)–cn→ℂ))
Assertion
Ref Expression
icocncflimc (𝜑 → (𝐹𝐴) ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴))

Proof of Theorem icocncflimc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 icocncflimc.f . . 3 (𝜑𝐹 ∈ ((𝐴[,)𝐵)–cn→ℂ))
2 icocncflimc.a . . . . 5 (𝜑𝐴 ∈ ℝ)
32rexrd 10292 . . . 4 (𝜑𝐴 ∈ ℝ*)
4 icocncflimc.b . . . 4 (𝜑𝐵 ∈ ℝ*)
52leidd 10797 . . . 4 (𝜑𝐴𝐴)
6 icocncflimc.altb . . . 4 (𝜑𝐴 < 𝐵)
73, 4, 3, 5, 6elicod 12430 . . 3 (𝜑𝐴 ∈ (𝐴[,)𝐵))
81, 7cnlimci 23874 . 2 (𝜑 → (𝐹𝐴) ∈ (𝐹 lim 𝐴))
9 cncfrss 22915 . . . . . . . 8 (𝐹 ∈ ((𝐴[,)𝐵)–cn→ℂ) → (𝐴[,)𝐵) ⊆ ℂ)
101, 9syl 17 . . . . . . 7 (𝜑 → (𝐴[,)𝐵) ⊆ ℂ)
11 ssid 3774 . . . . . . 7 ℂ ⊆ ℂ
12 eqid 2771 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
13 eqid 2771 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵))
14 eqid 2771 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t ℂ) = ((TopOpen‘ℂfld) ↾t ℂ)
1512, 13, 14cncfcn 22933 . . . . . . 7 (((𝐴[,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
1610, 11, 15sylancl 568 . . . . . 6 (𝜑 → ((𝐴[,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
171, 16eleqtrd 2852 . . . . 5 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
1812cnfldtopon 22807 . . . . . . . 8 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1918a1i 11 . . . . . . 7 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
20 resttopon 21187 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴[,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ∈ (TopOn‘(𝐴[,)𝐵)))
2119, 10, 20syl2anc 567 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ∈ (TopOn‘(𝐴[,)𝐵)))
2212cnfldtop 22808 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Top
23 unicntop 22810 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
2423restid 16303 . . . . . . . 8 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
2522, 24ax-mp 5 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
2625cnfldtopon 22807 . . . . . 6 ((TopOpen‘ℂfld) ↾t ℂ) ∈ (TopOn‘ℂ)
27 cncnp 21306 . . . . . 6 ((((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ∈ (TopOn‘(𝐴[,)𝐵)) ∧ ((TopOpen‘ℂfld) ↾t ℂ) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)) ↔ (𝐹:(𝐴[,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴[,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) CnP ((TopOpen‘ℂfld) ↾t ℂ))‘𝑥))))
2821, 26, 27sylancl 568 . . . . 5 (𝜑 → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)) ↔ (𝐹:(𝐴[,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴[,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) CnP ((TopOpen‘ℂfld) ↾t ℂ))‘𝑥))))
2917, 28mpbid 222 . . . 4 (𝜑 → (𝐹:(𝐴[,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴[,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) CnP ((TopOpen‘ℂfld) ↾t ℂ))‘𝑥)))
3029simpld 478 . . 3 (𝜑𝐹:(𝐴[,)𝐵)⟶ℂ)
31 ioossico 12469 . . . 4 (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵)
3231a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵))
33 eqid 2771 . . 3 ((TopOpen‘ℂfld) ↾t ((𝐴[,)𝐵) ∪ {𝐴})) = ((TopOpen‘ℂfld) ↾t ((𝐴[,)𝐵) ∪ {𝐴}))
342recnd 10271 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3523ntrtop 21096 . . . . . . . . 9 ((TopOpen‘ℂfld) ∈ Top → ((int‘(TopOpen‘ℂfld))‘ℂ) = ℂ)
3622, 35ax-mp 5 . . . . . . . 8 ((int‘(TopOpen‘ℂfld))‘ℂ) = ℂ
37 undif 4192 . . . . . . . . . . 11 ((𝐴[,)𝐵) ⊆ ℂ ↔ ((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵))) = ℂ)
3810, 37sylib 208 . . . . . . . . . 10 (𝜑 → ((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵))) = ℂ)
3938eqcomd 2777 . . . . . . . . 9 (𝜑 → ℂ = ((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵))))
4039fveq2d 6337 . . . . . . . 8 (𝜑 → ((int‘(TopOpen‘ℂfld))‘ℂ) = ((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵)))))
4136, 40syl5eqr 2819 . . . . . . 7 (𝜑 → ℂ = ((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵)))))
4234, 41eleqtrd 2852 . . . . . 6 (𝜑𝐴 ∈ ((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵)))))
4342, 7elind 3950 . . . . 5 (𝜑𝐴 ∈ (((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵)))) ∩ (𝐴[,)𝐵)))
4422a1i 11 . . . . . 6 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
45 ssid 3774 . . . . . . 7 (𝐴[,)𝐵) ⊆ (𝐴[,)𝐵)
4645a1i 11 . . . . . 6 (𝜑 → (𝐴[,)𝐵) ⊆ (𝐴[,)𝐵))
4723, 13restntr 21208 . . . . . 6 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,)𝐵) ⊆ ℂ ∧ (𝐴[,)𝐵) ⊆ (𝐴[,)𝐵)) → ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))‘(𝐴[,)𝐵)) = (((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵)))) ∩ (𝐴[,)𝐵)))
4844, 10, 46, 47syl3anc 1476 . . . . 5 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))‘(𝐴[,)𝐵)) = (((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵)))) ∩ (𝐴[,)𝐵)))
4943, 48eleqtrrd 2853 . . . 4 (𝜑𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))‘(𝐴[,)𝐵)))
507snssd 4476 . . . . . . . . 9 (𝜑 → {𝐴} ⊆ (𝐴[,)𝐵))
51 ssequn2 3938 . . . . . . . . 9 ({𝐴} ⊆ (𝐴[,)𝐵) ↔ ((𝐴[,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
5250, 51sylib 208 . . . . . . . 8 (𝜑 → ((𝐴[,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
5352eqcomd 2777 . . . . . . 7 (𝜑 → (𝐴[,)𝐵) = ((𝐴[,)𝐵) ∪ {𝐴}))
5453oveq2d 6810 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) = ((TopOpen‘ℂfld) ↾t ((𝐴[,)𝐵) ∪ {𝐴})))
5554fveq2d 6337 . . . . 5 (𝜑 → (int‘((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵))) = (int‘((TopOpen‘ℂfld) ↾t ((𝐴[,)𝐵) ∪ {𝐴}))))
56 snunioo1 40258 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
573, 4, 6, 56syl3anc 1476 . . . . . 6 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
5857eqcomd 2777 . . . . 5 (𝜑 → (𝐴[,)𝐵) = ((𝐴(,)𝐵) ∪ {𝐴}))
5955, 58fveq12d 6339 . . . 4 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))‘(𝐴[,)𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,)𝐵) ∪ {𝐴})))‘((𝐴(,)𝐵) ∪ {𝐴})))
6049, 59eleqtrd 2852 . . 3 (𝜑𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,)𝐵) ∪ {𝐴})))‘((𝐴(,)𝐵) ∪ {𝐴})))
6130, 32, 10, 12, 33, 60limcres 23871 . 2 (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴) = (𝐹 lim 𝐴))
628, 61eleqtrrd 2853 1 (𝜑 → (𝐹𝐴) ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  cdif 3721  cun 3722  cin 3723  wss 3724  {csn 4317   class class class wbr 4787  cres 5252  wf 6028  cfv 6032  (class class class)co 6794  cc 10137  cr 10138  *cxr 10276   < clt 10277  (,)cioo 12381  [,)cico 12383  t crest 16290  TopOpenctopn 16291  fldccnfld 19962  Topctop 20919  TopOnctopon 20936  intcnt 21043   Cn ccn 21250   CnP ccnp 21251  cnccncf 22900   lim climc 23847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097  ax-cnex 10195  ax-resscn 10196  ax-1cn 10197  ax-icn 10198  ax-addcl 10199  ax-addrcl 10200  ax-mulcl 10201  ax-mulrcl 10202  ax-mulcom 10203  ax-addass 10204  ax-mulass 10205  ax-distr 10206  ax-i2m1 10207  ax-1ne0 10208  ax-1rid 10209  ax-rnegex 10210  ax-rrecex 10211  ax-cnre 10212  ax-pre-lttri 10213  ax-pre-lttrn 10214  ax-pre-ltadd 10215  ax-pre-mulgt0 10216  ax-pre-sup 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-pss 3740  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5824  df-ord 5870  df-on 5871  df-lim 5872  df-suc 5873  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-riota 6755  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-om 7214  df-1st 7316  df-2nd 7317  df-wrecs 7560  df-recs 7622  df-rdg 7660  df-1o 7714  df-oadd 7718  df-er 7897  df-map 8012  df-pm 8013  df-en 8111  df-dom 8112  df-sdom 8113  df-fin 8114  df-fi 8474  df-sup 8505  df-inf 8506  df-pnf 10279  df-mnf 10280  df-xr 10281  df-ltxr 10282  df-le 10283  df-sub 10471  df-neg 10472  df-div 10888  df-nn 11224  df-2 11282  df-3 11283  df-4 11284  df-5 11285  df-6 11286  df-7 11287  df-8 11288  df-9 11289  df-n0 11496  df-z 11581  df-dec 11697  df-uz 11890  df-q 11993  df-rp 12037  df-xneg 12152  df-xadd 12153  df-xmul 12154  df-ioo 12385  df-ico 12387  df-icc 12388  df-fz 12535  df-seq 13010  df-exp 13069  df-cj 14048  df-re 14049  df-im 14050  df-sqrt 14184  df-abs 14185  df-struct 16067  df-ndx 16068  df-slot 16069  df-base 16071  df-plusg 16163  df-mulr 16164  df-starv 16165  df-tset 16169  df-ple 16170  df-ds 16173  df-unif 16174  df-rest 16292  df-topn 16293  df-topgen 16313  df-psmet 19954  df-xmet 19955  df-met 19956  df-bl 19957  df-mopn 19958  df-cnfld 19963  df-top 20920  df-topon 20937  df-topsp 20959  df-bases 20972  df-ntr 21046  df-cn 21253  df-cnp 21254  df-xms 22346  df-ms 22347  df-cncf 22902  df-limc 23851
This theorem is referenced by:  fourierdlem46  40887
  Copyright terms: Public domain W3C validator