MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfcompt2 Structured version   Visualization version   GIF version

Theorem cncfcompt2 23977
Description: Composition of continuous functions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
cncfcompt2.xph 𝑥𝜑
cncfcompt2.ab (𝜑 → (𝑥𝐴𝑅) ∈ (𝐴cn𝐵))
cncfcompt2.cd (𝜑 → (𝑦𝐶𝑆) ∈ (𝐶cn𝐸))
cncfcompt2.bc (𝜑𝐵𝐶)
cncfcompt2.st (𝑦 = 𝑅𝑆 = 𝑇)
Assertion
Ref Expression
cncfcompt2 (𝜑 → (𝑥𝐴𝑇) ∈ (𝐴cn𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶,𝑦   𝑦,𝑅   𝑥,𝑆   𝑦,𝑇
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝐵(𝑦)   𝑅(𝑥)   𝑆(𝑦)   𝑇(𝑥)   𝐸(𝑥,𝑦)

Proof of Theorem cncfcompt2
StepHypRef Expression
1 cncfcompt2.xph . . . . 5 𝑥𝜑
2 cncfcompt2.bc . . . . . . . 8 (𝜑𝐵𝐶)
32adantr 480 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝐶)
4 cncfcompt2.ab . . . . . . . . 9 (𝜑 → (𝑥𝐴𝑅) ∈ (𝐴cn𝐵))
5 cncff 23962 . . . . . . . . 9 ((𝑥𝐴𝑅) ∈ (𝐴cn𝐵) → (𝑥𝐴𝑅):𝐴𝐵)
64, 5syl 17 . . . . . . . 8 (𝜑 → (𝑥𝐴𝑅):𝐴𝐵)
76fvmptelrn 6969 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑅𝐵)
83, 7sseldd 3918 . . . . . 6 ((𝜑𝑥𝐴) → 𝑅𝐶)
98ex 412 . . . . 5 (𝜑 → (𝑥𝐴𝑅𝐶))
101, 9ralrimi 3139 . . . 4 (𝜑 → ∀𝑥𝐴 𝑅𝐶)
11 eqidd 2739 . . . 4 (𝜑 → (𝑥𝐴𝑅) = (𝑥𝐴𝑅))
12 eqidd 2739 . . . 4 (𝜑 → (𝑦𝐶𝑆) = (𝑦𝐶𝑆))
13 cncfcompt2.st . . . 4 (𝑦 = 𝑅𝑆 = 𝑇)
1410, 11, 12, 13fmptcof 6984 . . 3 (𝜑 → ((𝑦𝐶𝑆) ∘ (𝑥𝐴𝑅)) = (𝑥𝐴𝑇))
1514eqcomd 2744 . 2 (𝜑 → (𝑥𝐴𝑇) = ((𝑦𝐶𝑆) ∘ (𝑥𝐴𝑅)))
16 cncfcompt2.cd . . . . . 6 (𝜑 → (𝑦𝐶𝑆) ∈ (𝐶cn𝐸))
17 cncfrss 23960 . . . . . 6 ((𝑦𝐶𝑆) ∈ (𝐶cn𝐸) → 𝐶 ⊆ ℂ)
1816, 17syl 17 . . . . 5 (𝜑𝐶 ⊆ ℂ)
19 cncfss 23968 . . . . 5 ((𝐵𝐶𝐶 ⊆ ℂ) → (𝐴cn𝐵) ⊆ (𝐴cn𝐶))
202, 18, 19syl2anc 583 . . . 4 (𝜑 → (𝐴cn𝐵) ⊆ (𝐴cn𝐶))
2120, 4sseldd 3918 . . 3 (𝜑 → (𝑥𝐴𝑅) ∈ (𝐴cn𝐶))
2221, 16cncfco 23976 . 2 (𝜑 → ((𝑦𝐶𝑆) ∘ (𝑥𝐴𝑅)) ∈ (𝐴cn𝐸))
2315, 22eqeltrd 2839 1 (𝜑 → (𝑥𝐴𝑇) ∈ (𝐴cn𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1787  wcel 2108  wss 3883  cmpt 5153  ccom 5584  wf 6414  (class class class)co 7255  cc 10800  cnccncf 23945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-cj 14738  df-re 14739  df-im 14740  df-abs 14875  df-cncf 23947
This theorem is referenced by:  lcmineqlem9  39973  lcmineqlem12  39976  etransclem18  43683  etransclem22  43687  etransclem46  43711
  Copyright terms: Public domain W3C validator