| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cncfcompt2 | Structured version Visualization version GIF version | ||
| Description: Composition of continuous functions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| cncfcompt2.xph | ⊢ Ⅎ𝑥𝜑 |
| cncfcompt2.ab | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅) ∈ (𝐴–cn→𝐵)) |
| cncfcompt2.cd | ⊢ (𝜑 → (𝑦 ∈ 𝐶 ↦ 𝑆) ∈ (𝐶–cn→𝐸)) |
| cncfcompt2.bc | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| cncfcompt2.st | ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) |
| Ref | Expression |
|---|---|
| cncfcompt2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑇) ∈ (𝐴–cn→𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfcompt2.xph | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 2 | cncfcompt2.bc | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 3 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) |
| 4 | cncfcompt2.ab | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅) ∈ (𝐴–cn→𝐵)) | |
| 5 | cncff 24802 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝑅) ∈ (𝐴–cn→𝐵) → (𝑥 ∈ 𝐴 ↦ 𝑅):𝐴⟶𝐵) | |
| 6 | 4, 5 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅):𝐴⟶𝐵) |
| 7 | 6 | fvmptelcdm 7051 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ 𝐵) |
| 8 | 3, 7 | sseldd 3938 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ 𝐶) |
| 9 | 8 | ex 412 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑅 ∈ 𝐶)) |
| 10 | 1, 9 | ralrimi 3227 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑅 ∈ 𝐶) |
| 11 | eqidd 2730 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅) = (𝑥 ∈ 𝐴 ↦ 𝑅)) | |
| 12 | eqidd 2730 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐶 ↦ 𝑆) = (𝑦 ∈ 𝐶 ↦ 𝑆)) | |
| 13 | cncfcompt2.st | . . . 4 ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) | |
| 14 | 10, 11, 12, 13 | fmptcof 7068 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ 𝐶 ↦ 𝑆) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅)) = (𝑥 ∈ 𝐴 ↦ 𝑇)) |
| 15 | 14 | eqcomd 2735 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑇) = ((𝑦 ∈ 𝐶 ↦ 𝑆) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅))) |
| 16 | cncfcompt2.cd | . . . . . 6 ⊢ (𝜑 → (𝑦 ∈ 𝐶 ↦ 𝑆) ∈ (𝐶–cn→𝐸)) | |
| 17 | cncfrss 24800 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐶 ↦ 𝑆) ∈ (𝐶–cn→𝐸) → 𝐶 ⊆ ℂ) | |
| 18 | 16, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ ℂ) |
| 19 | cncfss 24808 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) → (𝐴–cn→𝐵) ⊆ (𝐴–cn→𝐶)) | |
| 20 | 2, 18, 19 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐴–cn→𝐵) ⊆ (𝐴–cn→𝐶)) |
| 21 | 20, 4 | sseldd 3938 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅) ∈ (𝐴–cn→𝐶)) |
| 22 | 21, 16 | cncfco 24816 | . 2 ⊢ (𝜑 → ((𝑦 ∈ 𝐶 ↦ 𝑆) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅)) ∈ (𝐴–cn→𝐸)) |
| 23 | 15, 22 | eqeltrd 2828 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑇) ∈ (𝐴–cn→𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ⊆ wss 3905 ↦ cmpt 5176 ∘ ccom 5627 ⟶wf 6482 (class class class)co 7353 ℂcc 11026 –cn→ccncf 24785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-cj 15024 df-re 15025 df-im 15026 df-abs 15161 df-cncf 24787 |
| This theorem is referenced by: lcmineqlem9 42010 lcmineqlem12 42013 etransclem18 46234 etransclem22 46238 etransclem46 46262 |
| Copyright terms: Public domain | W3C validator |