MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfcompt2 Structured version   Visualization version   GIF version

Theorem cncfcompt2 24271
Description: Composition of continuous functions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
cncfcompt2.xph 𝑥𝜑
cncfcompt2.ab (𝜑 → (𝑥𝐴𝑅) ∈ (𝐴cn𝐵))
cncfcompt2.cd (𝜑 → (𝑦𝐶𝑆) ∈ (𝐶cn𝐸))
cncfcompt2.bc (𝜑𝐵𝐶)
cncfcompt2.st (𝑦 = 𝑅𝑆 = 𝑇)
Assertion
Ref Expression
cncfcompt2 (𝜑 → (𝑥𝐴𝑇) ∈ (𝐴cn𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶,𝑦   𝑦,𝑅   𝑥,𝑆   𝑦,𝑇
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝐵(𝑦)   𝑅(𝑥)   𝑆(𝑦)   𝑇(𝑥)   𝐸(𝑥,𝑦)

Proof of Theorem cncfcompt2
StepHypRef Expression
1 cncfcompt2.xph . . . . 5 𝑥𝜑
2 cncfcompt2.bc . . . . . . . 8 (𝜑𝐵𝐶)
32adantr 481 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝐶)
4 cncfcompt2.ab . . . . . . . . 9 (𝜑 → (𝑥𝐴𝑅) ∈ (𝐴cn𝐵))
5 cncff 24256 . . . . . . . . 9 ((𝑥𝐴𝑅) ∈ (𝐴cn𝐵) → (𝑥𝐴𝑅):𝐴𝐵)
64, 5syl 17 . . . . . . . 8 (𝜑 → (𝑥𝐴𝑅):𝐴𝐵)
76fvmptelcdm 7061 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑅𝐵)
83, 7sseldd 3945 . . . . . 6 ((𝜑𝑥𝐴) → 𝑅𝐶)
98ex 413 . . . . 5 (𝜑 → (𝑥𝐴𝑅𝐶))
101, 9ralrimi 3240 . . . 4 (𝜑 → ∀𝑥𝐴 𝑅𝐶)
11 eqidd 2737 . . . 4 (𝜑 → (𝑥𝐴𝑅) = (𝑥𝐴𝑅))
12 eqidd 2737 . . . 4 (𝜑 → (𝑦𝐶𝑆) = (𝑦𝐶𝑆))
13 cncfcompt2.st . . . 4 (𝑦 = 𝑅𝑆 = 𝑇)
1410, 11, 12, 13fmptcof 7076 . . 3 (𝜑 → ((𝑦𝐶𝑆) ∘ (𝑥𝐴𝑅)) = (𝑥𝐴𝑇))
1514eqcomd 2742 . 2 (𝜑 → (𝑥𝐴𝑇) = ((𝑦𝐶𝑆) ∘ (𝑥𝐴𝑅)))
16 cncfcompt2.cd . . . . . 6 (𝜑 → (𝑦𝐶𝑆) ∈ (𝐶cn𝐸))
17 cncfrss 24254 . . . . . 6 ((𝑦𝐶𝑆) ∈ (𝐶cn𝐸) → 𝐶 ⊆ ℂ)
1816, 17syl 17 . . . . 5 (𝜑𝐶 ⊆ ℂ)
19 cncfss 24262 . . . . 5 ((𝐵𝐶𝐶 ⊆ ℂ) → (𝐴cn𝐵) ⊆ (𝐴cn𝐶))
202, 18, 19syl2anc 584 . . . 4 (𝜑 → (𝐴cn𝐵) ⊆ (𝐴cn𝐶))
2120, 4sseldd 3945 . . 3 (𝜑 → (𝑥𝐴𝑅) ∈ (𝐴cn𝐶))
2221, 16cncfco 24270 . 2 (𝜑 → ((𝑦𝐶𝑆) ∘ (𝑥𝐴𝑅)) ∈ (𝐴cn𝐸))
2315, 22eqeltrd 2838 1 (𝜑 → (𝑥𝐴𝑇) ∈ (𝐴cn𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wnf 1785  wcel 2106  wss 3910  cmpt 5188  ccom 5637  wf 6492  (class class class)co 7357  cc 11049  cnccncf 24239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-2 12216  df-cj 14984  df-re 14985  df-im 14986  df-abs 15121  df-cncf 24241
This theorem is referenced by:  lcmineqlem9  40494  lcmineqlem12  40497  etransclem18  44483  etransclem22  44487  etransclem46  44511
  Copyright terms: Public domain W3C validator