![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cncfcompt2 | Structured version Visualization version GIF version |
Description: Composition of continuous functions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
cncfcompt2.xph | ⊢ Ⅎ𝑥𝜑 |
cncfcompt2.ab | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅) ∈ (𝐴–cn→𝐵)) |
cncfcompt2.cd | ⊢ (𝜑 → (𝑦 ∈ 𝐶 ↦ 𝑆) ∈ (𝐶–cn→𝐸)) |
cncfcompt2.bc | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
cncfcompt2.st | ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) |
Ref | Expression |
---|---|
cncfcompt2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑇) ∈ (𝐴–cn→𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfcompt2.xph | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
2 | cncfcompt2.bc | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
3 | 2 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) |
4 | cncfcompt2.ab | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅) ∈ (𝐴–cn→𝐵)) | |
5 | cncff 24256 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝑅) ∈ (𝐴–cn→𝐵) → (𝑥 ∈ 𝐴 ↦ 𝑅):𝐴⟶𝐵) | |
6 | 4, 5 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅):𝐴⟶𝐵) |
7 | 6 | fvmptelcdm 7061 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ 𝐵) |
8 | 3, 7 | sseldd 3945 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ 𝐶) |
9 | 8 | ex 413 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑅 ∈ 𝐶)) |
10 | 1, 9 | ralrimi 3240 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑅 ∈ 𝐶) |
11 | eqidd 2737 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅) = (𝑥 ∈ 𝐴 ↦ 𝑅)) | |
12 | eqidd 2737 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐶 ↦ 𝑆) = (𝑦 ∈ 𝐶 ↦ 𝑆)) | |
13 | cncfcompt2.st | . . . 4 ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) | |
14 | 10, 11, 12, 13 | fmptcof 7076 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ 𝐶 ↦ 𝑆) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅)) = (𝑥 ∈ 𝐴 ↦ 𝑇)) |
15 | 14 | eqcomd 2742 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑇) = ((𝑦 ∈ 𝐶 ↦ 𝑆) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅))) |
16 | cncfcompt2.cd | . . . . . 6 ⊢ (𝜑 → (𝑦 ∈ 𝐶 ↦ 𝑆) ∈ (𝐶–cn→𝐸)) | |
17 | cncfrss 24254 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐶 ↦ 𝑆) ∈ (𝐶–cn→𝐸) → 𝐶 ⊆ ℂ) | |
18 | 16, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ ℂ) |
19 | cncfss 24262 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) → (𝐴–cn→𝐵) ⊆ (𝐴–cn→𝐶)) | |
20 | 2, 18, 19 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐴–cn→𝐵) ⊆ (𝐴–cn→𝐶)) |
21 | 20, 4 | sseldd 3945 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅) ∈ (𝐴–cn→𝐶)) |
22 | 21, 16 | cncfco 24270 | . 2 ⊢ (𝜑 → ((𝑦 ∈ 𝐶 ↦ 𝑆) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅)) ∈ (𝐴–cn→𝐸)) |
23 | 15, 22 | eqeltrd 2838 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑇) ∈ (𝐴–cn→𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 Ⅎwnf 1785 ∈ wcel 2106 ⊆ wss 3910 ↦ cmpt 5188 ∘ ccom 5637 ⟶wf 6492 (class class class)co 7357 ℂcc 11049 –cn→ccncf 24239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-br 5106 df-opab 5168 df-mpt 5189 df-id 5531 df-po 5545 df-so 5546 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-er 8648 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-2 12216 df-cj 14984 df-re 14985 df-im 14986 df-abs 15121 df-cncf 24241 |
This theorem is referenced by: lcmineqlem9 40494 lcmineqlem12 40497 etransclem18 44483 etransclem22 44487 etransclem46 44511 |
Copyright terms: Public domain | W3C validator |