| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cncfcompt2 | Structured version Visualization version GIF version | ||
| Description: Composition of continuous functions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| cncfcompt2.xph | ⊢ Ⅎ𝑥𝜑 |
| cncfcompt2.ab | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅) ∈ (𝐴–cn→𝐵)) |
| cncfcompt2.cd | ⊢ (𝜑 → (𝑦 ∈ 𝐶 ↦ 𝑆) ∈ (𝐶–cn→𝐸)) |
| cncfcompt2.bc | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| cncfcompt2.st | ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) |
| Ref | Expression |
|---|---|
| cncfcompt2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑇) ∈ (𝐴–cn→𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfcompt2.xph | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 2 | cncfcompt2.bc | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 3 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) |
| 4 | cncfcompt2.ab | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅) ∈ (𝐴–cn→𝐵)) | |
| 5 | cncff 24814 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝑅) ∈ (𝐴–cn→𝐵) → (𝑥 ∈ 𝐴 ↦ 𝑅):𝐴⟶𝐵) | |
| 6 | 4, 5 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅):𝐴⟶𝐵) |
| 7 | 6 | fvmptelcdm 7052 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ 𝐵) |
| 8 | 3, 7 | sseldd 3931 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ 𝐶) |
| 9 | 8 | ex 412 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑅 ∈ 𝐶)) |
| 10 | 1, 9 | ralrimi 3231 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑅 ∈ 𝐶) |
| 11 | eqidd 2734 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅) = (𝑥 ∈ 𝐴 ↦ 𝑅)) | |
| 12 | eqidd 2734 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐶 ↦ 𝑆) = (𝑦 ∈ 𝐶 ↦ 𝑆)) | |
| 13 | cncfcompt2.st | . . . 4 ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) | |
| 14 | 10, 11, 12, 13 | fmptcof 7069 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ 𝐶 ↦ 𝑆) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅)) = (𝑥 ∈ 𝐴 ↦ 𝑇)) |
| 15 | 14 | eqcomd 2739 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑇) = ((𝑦 ∈ 𝐶 ↦ 𝑆) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅))) |
| 16 | cncfcompt2.cd | . . . . . 6 ⊢ (𝜑 → (𝑦 ∈ 𝐶 ↦ 𝑆) ∈ (𝐶–cn→𝐸)) | |
| 17 | cncfrss 24812 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐶 ↦ 𝑆) ∈ (𝐶–cn→𝐸) → 𝐶 ⊆ ℂ) | |
| 18 | 16, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ ℂ) |
| 19 | cncfss 24820 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) → (𝐴–cn→𝐵) ⊆ (𝐴–cn→𝐶)) | |
| 20 | 2, 18, 19 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐴–cn→𝐵) ⊆ (𝐴–cn→𝐶)) |
| 21 | 20, 4 | sseldd 3931 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅) ∈ (𝐴–cn→𝐶)) |
| 22 | 21, 16 | cncfco 24828 | . 2 ⊢ (𝜑 → ((𝑦 ∈ 𝐶 ↦ 𝑆) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅)) ∈ (𝐴–cn→𝐸)) |
| 23 | 15, 22 | eqeltrd 2833 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑇) ∈ (𝐴–cn→𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2113 ⊆ wss 3898 ↦ cmpt 5174 ∘ ccom 5623 ⟶wf 6482 (class class class)co 7352 ℂcc 11011 –cn→ccncf 24797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-cj 15008 df-re 15009 df-im 15010 df-abs 15145 df-cncf 24799 |
| This theorem is referenced by: lcmineqlem9 42150 lcmineqlem12 42153 etransclem18 46374 etransclem22 46378 etransclem46 46402 |
| Copyright terms: Public domain | W3C validator |