![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cncfcompt2 | Structured version Visualization version GIF version |
Description: Composition of continuous functions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
cncfcompt2.xph | ⊢ Ⅎ𝑥𝜑 |
cncfcompt2.ab | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅) ∈ (𝐴–cn→𝐵)) |
cncfcompt2.cd | ⊢ (𝜑 → (𝑦 ∈ 𝐶 ↦ 𝑆) ∈ (𝐶–cn→𝐸)) |
cncfcompt2.bc | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
cncfcompt2.st | ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) |
Ref | Expression |
---|---|
cncfcompt2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑇) ∈ (𝐴–cn→𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfcompt2.xph | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
2 | cncfcompt2.bc | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
3 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) |
4 | cncfcompt2.ab | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅) ∈ (𝐴–cn→𝐵)) | |
5 | cncff 24763 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝑅) ∈ (𝐴–cn→𝐵) → (𝑥 ∈ 𝐴 ↦ 𝑅):𝐴⟶𝐵) | |
6 | 4, 5 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅):𝐴⟶𝐵) |
7 | 6 | fvmptelcdm 7107 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ 𝐵) |
8 | 3, 7 | sseldd 3978 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ 𝐶) |
9 | 8 | ex 412 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑅 ∈ 𝐶)) |
10 | 1, 9 | ralrimi 3248 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑅 ∈ 𝐶) |
11 | eqidd 2727 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅) = (𝑥 ∈ 𝐴 ↦ 𝑅)) | |
12 | eqidd 2727 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐶 ↦ 𝑆) = (𝑦 ∈ 𝐶 ↦ 𝑆)) | |
13 | cncfcompt2.st | . . . 4 ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) | |
14 | 10, 11, 12, 13 | fmptcof 7123 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ 𝐶 ↦ 𝑆) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅)) = (𝑥 ∈ 𝐴 ↦ 𝑇)) |
15 | 14 | eqcomd 2732 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑇) = ((𝑦 ∈ 𝐶 ↦ 𝑆) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅))) |
16 | cncfcompt2.cd | . . . . . 6 ⊢ (𝜑 → (𝑦 ∈ 𝐶 ↦ 𝑆) ∈ (𝐶–cn→𝐸)) | |
17 | cncfrss 24761 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐶 ↦ 𝑆) ∈ (𝐶–cn→𝐸) → 𝐶 ⊆ ℂ) | |
18 | 16, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ ℂ) |
19 | cncfss 24769 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) → (𝐴–cn→𝐵) ⊆ (𝐴–cn→𝐶)) | |
20 | 2, 18, 19 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐴–cn→𝐵) ⊆ (𝐴–cn→𝐶)) |
21 | 20, 4 | sseldd 3978 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅) ∈ (𝐴–cn→𝐶)) |
22 | 21, 16 | cncfco 24777 | . 2 ⊢ (𝜑 → ((𝑦 ∈ 𝐶 ↦ 𝑆) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅)) ∈ (𝐴–cn→𝐸)) |
23 | 15, 22 | eqeltrd 2827 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑇) ∈ (𝐴–cn→𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 ⊆ wss 3943 ↦ cmpt 5224 ∘ ccom 5673 ⟶wf 6532 (class class class)co 7404 ℂcc 11107 –cn→ccncf 24746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-2 12276 df-cj 15049 df-re 15050 df-im 15051 df-abs 15186 df-cncf 24748 |
This theorem is referenced by: lcmineqlem9 41417 lcmineqlem12 41420 etransclem18 45522 etransclem22 45526 etransclem46 45550 |
Copyright terms: Public domain | W3C validator |