MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfcompt2 Structured version   Visualization version   GIF version

Theorem cncfcompt2 24826
Description: Composition of continuous functions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
cncfcompt2.xph 𝑥𝜑
cncfcompt2.ab (𝜑 → (𝑥𝐴𝑅) ∈ (𝐴cn𝐵))
cncfcompt2.cd (𝜑 → (𝑦𝐶𝑆) ∈ (𝐶cn𝐸))
cncfcompt2.bc (𝜑𝐵𝐶)
cncfcompt2.st (𝑦 = 𝑅𝑆 = 𝑇)
Assertion
Ref Expression
cncfcompt2 (𝜑 → (𝑥𝐴𝑇) ∈ (𝐴cn𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶,𝑦   𝑦,𝑅   𝑥,𝑆   𝑦,𝑇
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝐵(𝑦)   𝑅(𝑥)   𝑆(𝑦)   𝑇(𝑥)   𝐸(𝑥,𝑦)

Proof of Theorem cncfcompt2
StepHypRef Expression
1 cncfcompt2.xph . . . . 5 𝑥𝜑
2 cncfcompt2.bc . . . . . . . 8 (𝜑𝐵𝐶)
32adantr 480 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝐶)
4 cncfcompt2.ab . . . . . . . . 9 (𝜑 → (𝑥𝐴𝑅) ∈ (𝐴cn𝐵))
5 cncff 24811 . . . . . . . . 9 ((𝑥𝐴𝑅) ∈ (𝐴cn𝐵) → (𝑥𝐴𝑅):𝐴𝐵)
64, 5syl 17 . . . . . . . 8 (𝜑 → (𝑥𝐴𝑅):𝐴𝐵)
76fvmptelcdm 7046 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑅𝐵)
83, 7sseldd 3935 . . . . . 6 ((𝜑𝑥𝐴) → 𝑅𝐶)
98ex 412 . . . . 5 (𝜑 → (𝑥𝐴𝑅𝐶))
101, 9ralrimi 3230 . . . 4 (𝜑 → ∀𝑥𝐴 𝑅𝐶)
11 eqidd 2732 . . . 4 (𝜑 → (𝑥𝐴𝑅) = (𝑥𝐴𝑅))
12 eqidd 2732 . . . 4 (𝜑 → (𝑦𝐶𝑆) = (𝑦𝐶𝑆))
13 cncfcompt2.st . . . 4 (𝑦 = 𝑅𝑆 = 𝑇)
1410, 11, 12, 13fmptcof 7063 . . 3 (𝜑 → ((𝑦𝐶𝑆) ∘ (𝑥𝐴𝑅)) = (𝑥𝐴𝑇))
1514eqcomd 2737 . 2 (𝜑 → (𝑥𝐴𝑇) = ((𝑦𝐶𝑆) ∘ (𝑥𝐴𝑅)))
16 cncfcompt2.cd . . . . . 6 (𝜑 → (𝑦𝐶𝑆) ∈ (𝐶cn𝐸))
17 cncfrss 24809 . . . . . 6 ((𝑦𝐶𝑆) ∈ (𝐶cn𝐸) → 𝐶 ⊆ ℂ)
1816, 17syl 17 . . . . 5 (𝜑𝐶 ⊆ ℂ)
19 cncfss 24817 . . . . 5 ((𝐵𝐶𝐶 ⊆ ℂ) → (𝐴cn𝐵) ⊆ (𝐴cn𝐶))
202, 18, 19syl2anc 584 . . . 4 (𝜑 → (𝐴cn𝐵) ⊆ (𝐴cn𝐶))
2120, 4sseldd 3935 . . 3 (𝜑 → (𝑥𝐴𝑅) ∈ (𝐴cn𝐶))
2221, 16cncfco 24825 . 2 (𝜑 → ((𝑦𝐶𝑆) ∘ (𝑥𝐴𝑅)) ∈ (𝐴cn𝐸))
2315, 22eqeltrd 2831 1 (𝜑 → (𝑥𝐴𝑇) ∈ (𝐴cn𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2111  wss 3902  cmpt 5172  ccom 5620  wf 6477  (class class class)co 7346  cc 11001  cnccncf 24794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-cj 15003  df-re 15004  df-im 15005  df-abs 15140  df-cncf 24796
This theorem is referenced by:  lcmineqlem9  42069  lcmineqlem12  42072  etransclem18  46289  etransclem22  46293  etransclem46  46317
  Copyright terms: Public domain W3C validator