MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfcompt2 Structured version   Visualization version   GIF version

Theorem cncfcompt2 24948
Description: Composition of continuous functions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
cncfcompt2.xph 𝑥𝜑
cncfcompt2.ab (𝜑 → (𝑥𝐴𝑅) ∈ (𝐴cn𝐵))
cncfcompt2.cd (𝜑 → (𝑦𝐶𝑆) ∈ (𝐶cn𝐸))
cncfcompt2.bc (𝜑𝐵𝐶)
cncfcompt2.st (𝑦 = 𝑅𝑆 = 𝑇)
Assertion
Ref Expression
cncfcompt2 (𝜑 → (𝑥𝐴𝑇) ∈ (𝐴cn𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶,𝑦   𝑦,𝑅   𝑥,𝑆   𝑦,𝑇
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝐵(𝑦)   𝑅(𝑥)   𝑆(𝑦)   𝑇(𝑥)   𝐸(𝑥,𝑦)

Proof of Theorem cncfcompt2
StepHypRef Expression
1 cncfcompt2.xph . . . . 5 𝑥𝜑
2 cncfcompt2.bc . . . . . . . 8 (𝜑𝐵𝐶)
32adantr 480 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝐶)
4 cncfcompt2.ab . . . . . . . . 9 (𝜑 → (𝑥𝐴𝑅) ∈ (𝐴cn𝐵))
5 cncff 24933 . . . . . . . . 9 ((𝑥𝐴𝑅) ∈ (𝐴cn𝐵) → (𝑥𝐴𝑅):𝐴𝐵)
64, 5syl 17 . . . . . . . 8 (𝜑 → (𝑥𝐴𝑅):𝐴𝐵)
76fvmptelcdm 7133 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑅𝐵)
83, 7sseldd 3996 . . . . . 6 ((𝜑𝑥𝐴) → 𝑅𝐶)
98ex 412 . . . . 5 (𝜑 → (𝑥𝐴𝑅𝐶))
101, 9ralrimi 3255 . . . 4 (𝜑 → ∀𝑥𝐴 𝑅𝐶)
11 eqidd 2736 . . . 4 (𝜑 → (𝑥𝐴𝑅) = (𝑥𝐴𝑅))
12 eqidd 2736 . . . 4 (𝜑 → (𝑦𝐶𝑆) = (𝑦𝐶𝑆))
13 cncfcompt2.st . . . 4 (𝑦 = 𝑅𝑆 = 𝑇)
1410, 11, 12, 13fmptcof 7150 . . 3 (𝜑 → ((𝑦𝐶𝑆) ∘ (𝑥𝐴𝑅)) = (𝑥𝐴𝑇))
1514eqcomd 2741 . 2 (𝜑 → (𝑥𝐴𝑇) = ((𝑦𝐶𝑆) ∘ (𝑥𝐴𝑅)))
16 cncfcompt2.cd . . . . . 6 (𝜑 → (𝑦𝐶𝑆) ∈ (𝐶cn𝐸))
17 cncfrss 24931 . . . . . 6 ((𝑦𝐶𝑆) ∈ (𝐶cn𝐸) → 𝐶 ⊆ ℂ)
1816, 17syl 17 . . . . 5 (𝜑𝐶 ⊆ ℂ)
19 cncfss 24939 . . . . 5 ((𝐵𝐶𝐶 ⊆ ℂ) → (𝐴cn𝐵) ⊆ (𝐴cn𝐶))
202, 18, 19syl2anc 584 . . . 4 (𝜑 → (𝐴cn𝐵) ⊆ (𝐴cn𝐶))
2120, 4sseldd 3996 . . 3 (𝜑 → (𝑥𝐴𝑅) ∈ (𝐴cn𝐶))
2221, 16cncfco 24947 . 2 (𝜑 → ((𝑦𝐶𝑆) ∘ (𝑥𝐴𝑅)) ∈ (𝐴cn𝐸))
2315, 22eqeltrd 2839 1 (𝜑 → (𝑥𝐴𝑇) ∈ (𝐴cn𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1780  wcel 2106  wss 3963  cmpt 5231  ccom 5693  wf 6559  (class class class)co 7431  cc 11151  cnccncf 24916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-2 12327  df-cj 15135  df-re 15136  df-im 15137  df-abs 15272  df-cncf 24918
This theorem is referenced by:  lcmineqlem9  42019  lcmineqlem12  42022  etransclem18  46208  etransclem22  46212  etransclem46  46236
  Copyright terms: Public domain W3C validator