MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfcompt2 Structured version   Visualization version   GIF version

Theorem cncfcompt2 24423
Description: Composition of continuous functions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
cncfcompt2.xph 𝑥𝜑
cncfcompt2.ab (𝜑 → (𝑥𝐴𝑅) ∈ (𝐴cn𝐵))
cncfcompt2.cd (𝜑 → (𝑦𝐶𝑆) ∈ (𝐶cn𝐸))
cncfcompt2.bc (𝜑𝐵𝐶)
cncfcompt2.st (𝑦 = 𝑅𝑆 = 𝑇)
Assertion
Ref Expression
cncfcompt2 (𝜑 → (𝑥𝐴𝑇) ∈ (𝐴cn𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶,𝑦   𝑦,𝑅   𝑥,𝑆   𝑦,𝑇
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝐵(𝑦)   𝑅(𝑥)   𝑆(𝑦)   𝑇(𝑥)   𝐸(𝑥,𝑦)

Proof of Theorem cncfcompt2
StepHypRef Expression
1 cncfcompt2.xph . . . . 5 𝑥𝜑
2 cncfcompt2.bc . . . . . . . 8 (𝜑𝐵𝐶)
32adantr 481 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝐶)
4 cncfcompt2.ab . . . . . . . . 9 (𝜑 → (𝑥𝐴𝑅) ∈ (𝐴cn𝐵))
5 cncff 24408 . . . . . . . . 9 ((𝑥𝐴𝑅) ∈ (𝐴cn𝐵) → (𝑥𝐴𝑅):𝐴𝐵)
64, 5syl 17 . . . . . . . 8 (𝜑 → (𝑥𝐴𝑅):𝐴𝐵)
76fvmptelcdm 7112 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑅𝐵)
83, 7sseldd 3983 . . . . . 6 ((𝜑𝑥𝐴) → 𝑅𝐶)
98ex 413 . . . . 5 (𝜑 → (𝑥𝐴𝑅𝐶))
101, 9ralrimi 3254 . . . 4 (𝜑 → ∀𝑥𝐴 𝑅𝐶)
11 eqidd 2733 . . . 4 (𝜑 → (𝑥𝐴𝑅) = (𝑥𝐴𝑅))
12 eqidd 2733 . . . 4 (𝜑 → (𝑦𝐶𝑆) = (𝑦𝐶𝑆))
13 cncfcompt2.st . . . 4 (𝑦 = 𝑅𝑆 = 𝑇)
1410, 11, 12, 13fmptcof 7127 . . 3 (𝜑 → ((𝑦𝐶𝑆) ∘ (𝑥𝐴𝑅)) = (𝑥𝐴𝑇))
1514eqcomd 2738 . 2 (𝜑 → (𝑥𝐴𝑇) = ((𝑦𝐶𝑆) ∘ (𝑥𝐴𝑅)))
16 cncfcompt2.cd . . . . . 6 (𝜑 → (𝑦𝐶𝑆) ∈ (𝐶cn𝐸))
17 cncfrss 24406 . . . . . 6 ((𝑦𝐶𝑆) ∈ (𝐶cn𝐸) → 𝐶 ⊆ ℂ)
1816, 17syl 17 . . . . 5 (𝜑𝐶 ⊆ ℂ)
19 cncfss 24414 . . . . 5 ((𝐵𝐶𝐶 ⊆ ℂ) → (𝐴cn𝐵) ⊆ (𝐴cn𝐶))
202, 18, 19syl2anc 584 . . . 4 (𝜑 → (𝐴cn𝐵) ⊆ (𝐴cn𝐶))
2120, 4sseldd 3983 . . 3 (𝜑 → (𝑥𝐴𝑅) ∈ (𝐴cn𝐶))
2221, 16cncfco 24422 . 2 (𝜑 → ((𝑦𝐶𝑆) ∘ (𝑥𝐴𝑅)) ∈ (𝐴cn𝐸))
2315, 22eqeltrd 2833 1 (𝜑 → (𝑥𝐴𝑇) ∈ (𝐴cn𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wnf 1785  wcel 2106  wss 3948  cmpt 5231  ccom 5680  wf 6539  (class class class)co 7408  cc 11107  cnccncf 24391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-2 12274  df-cj 15045  df-re 15046  df-im 15047  df-abs 15182  df-cncf 24393
This theorem is referenced by:  lcmineqlem9  40897  lcmineqlem12  40900  etransclem18  44958  etransclem22  44962  etransclem46  44986
  Copyright terms: Public domain W3C validator