Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioccncflimc Structured version   Visualization version   GIF version

Theorem ioccncflimc 45411
Description: Limit at the upper bound of a continuous function defined on a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ioccncflimc.a (𝜑𝐴 ∈ ℝ*)
ioccncflimc.b (𝜑𝐵 ∈ ℝ)
ioccncflimc.altb (𝜑𝐴 < 𝐵)
ioccncflimc.f (𝜑𝐹 ∈ ((𝐴(,]𝐵)–cn→ℂ))
Assertion
Ref Expression
ioccncflimc (𝜑 → (𝐹𝐵) ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵))

Proof of Theorem ioccncflimc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ioccncflimc.f . . 3 (𝜑𝐹 ∈ ((𝐴(,]𝐵)–cn→ℂ))
2 ioccncflimc.a . . . 4 (𝜑𝐴 ∈ ℝ*)
3 ioccncflimc.b . . . . 5 (𝜑𝐵 ∈ ℝ)
43rexrd 11296 . . . 4 (𝜑𝐵 ∈ ℝ*)
5 ioccncflimc.altb . . . 4 (𝜑𝐴 < 𝐵)
63leidd 11812 . . . 4 (𝜑𝐵𝐵)
72, 4, 4, 5, 6eliocd 45030 . . 3 (𝜑𝐵 ∈ (𝐴(,]𝐵))
81, 7cnlimci 25862 . 2 (𝜑 → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
9 cncfrss 24855 . . . . . . . 8 (𝐹 ∈ ((𝐴(,]𝐵)–cn→ℂ) → (𝐴(,]𝐵) ⊆ ℂ)
101, 9syl 17 . . . . . . 7 (𝜑 → (𝐴(,]𝐵) ⊆ ℂ)
11 ssid 3999 . . . . . . 7 ℂ ⊆ ℂ
12 eqid 2725 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
13 eqid 2725 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵))
14 eqid 2725 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t ℂ) = ((TopOpen‘ℂfld) ↾t ℂ)
1512, 13, 14cncfcn 24874 . . . . . . 7 (((𝐴(,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,]𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
1610, 11, 15sylancl 584 . . . . . 6 (𝜑 → ((𝐴(,]𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
171, 16eleqtrd 2827 . . . . 5 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
1812cnfldtopon 24743 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
19 resttopon 23109 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,]𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) ∈ (TopOn‘(𝐴(,]𝐵)))
2018, 10, 19sylancr 585 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) ∈ (TopOn‘(𝐴(,]𝐵)))
2112cnfldtop 24744 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Top
22 unicntop 24746 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
2322restid 17418 . . . . . . . 8 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
2421, 23ax-mp 5 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
2524cnfldtopon 24743 . . . . . 6 ((TopOpen‘ℂfld) ↾t ℂ) ∈ (TopOn‘ℂ)
26 cncnp 23228 . . . . . 6 ((((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) ∈ (TopOn‘(𝐴(,]𝐵)) ∧ ((TopOpen‘ℂfld) ↾t ℂ) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)) ↔ (𝐹:(𝐴(,]𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,]𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) CnP ((TopOpen‘ℂfld) ↾t ℂ))‘𝑥))))
2720, 25, 26sylancl 584 . . . . 5 (𝜑 → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)) ↔ (𝐹:(𝐴(,]𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,]𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) CnP ((TopOpen‘ℂfld) ↾t ℂ))‘𝑥))))
2817, 27mpbid 231 . . . 4 (𝜑 → (𝐹:(𝐴(,]𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,]𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) CnP ((TopOpen‘ℂfld) ↾t ℂ))‘𝑥)))
2928simpld 493 . . 3 (𝜑𝐹:(𝐴(,]𝐵)⟶ℂ)
30 ioossioc 45015 . . . 4 (𝐴(,)𝐵) ⊆ (𝐴(,]𝐵)
3130a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,]𝐵))
32 eqid 2725 . . 3 ((TopOpen‘ℂfld) ↾t ((𝐴(,]𝐵) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴(,]𝐵) ∪ {𝐵}))
333recnd 11274 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
3422ntrtop 23018 . . . . . . . . 9 ((TopOpen‘ℂfld) ∈ Top → ((int‘(TopOpen‘ℂfld))‘ℂ) = ℂ)
3521, 34ax-mp 5 . . . . . . . 8 ((int‘(TopOpen‘ℂfld))‘ℂ) = ℂ
36 undif 4483 . . . . . . . . . . 11 ((𝐴(,]𝐵) ⊆ ℂ ↔ ((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵))) = ℂ)
3710, 36sylib 217 . . . . . . . . . 10 (𝜑 → ((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵))) = ℂ)
3837eqcomd 2731 . . . . . . . . 9 (𝜑 → ℂ = ((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵))))
3938fveq2d 6900 . . . . . . . 8 (𝜑 → ((int‘(TopOpen‘ℂfld))‘ℂ) = ((int‘(TopOpen‘ℂfld))‘((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵)))))
4035, 39eqtr3id 2779 . . . . . . 7 (𝜑 → ℂ = ((int‘(TopOpen‘ℂfld))‘((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵)))))
4133, 40eleqtrd 2827 . . . . . 6 (𝜑𝐵 ∈ ((int‘(TopOpen‘ℂfld))‘((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵)))))
4241, 7elind 4192 . . . . 5 (𝜑𝐵 ∈ (((int‘(TopOpen‘ℂfld))‘((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵)))) ∩ (𝐴(,]𝐵)))
4321a1i 11 . . . . . 6 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
44 ssid 3999 . . . . . . 7 (𝐴(,]𝐵) ⊆ (𝐴(,]𝐵)
4544a1i 11 . . . . . 6 (𝜑 → (𝐴(,]𝐵) ⊆ (𝐴(,]𝐵))
4622, 13restntr 23130 . . . . . 6 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴(,]𝐵) ⊆ ℂ ∧ (𝐴(,]𝐵) ⊆ (𝐴(,]𝐵)) → ((int‘((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))‘(𝐴(,]𝐵)) = (((int‘(TopOpen‘ℂfld))‘((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵)))) ∩ (𝐴(,]𝐵)))
4743, 10, 45, 46syl3anc 1368 . . . . 5 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))‘(𝐴(,]𝐵)) = (((int‘(TopOpen‘ℂfld))‘((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵)))) ∩ (𝐴(,]𝐵)))
4842, 47eleqtrrd 2828 . . . 4 (𝜑𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))‘(𝐴(,]𝐵)))
497snssd 4814 . . . . . . . . 9 (𝜑 → {𝐵} ⊆ (𝐴(,]𝐵))
50 ssequn2 4181 . . . . . . . . 9 ({𝐵} ⊆ (𝐴(,]𝐵) ↔ ((𝐴(,]𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
5149, 50sylib 217 . . . . . . . 8 (𝜑 → ((𝐴(,]𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
5251eqcomd 2731 . . . . . . 7 (𝜑 → (𝐴(,]𝐵) = ((𝐴(,]𝐵) ∪ {𝐵}))
5352oveq2d 7435 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) = ((TopOpen‘ℂfld) ↾t ((𝐴(,]𝐵) ∪ {𝐵})))
5453fveq2d 6900 . . . . 5 (𝜑 → (int‘((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵))) = (int‘((TopOpen‘ℂfld) ↾t ((𝐴(,]𝐵) ∪ {𝐵}))))
55 ioounsn 13489 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
562, 4, 5, 55syl3anc 1368 . . . . . 6 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
5756eqcomd 2731 . . . . 5 (𝜑 → (𝐴(,]𝐵) = ((𝐴(,)𝐵) ∪ {𝐵}))
5854, 57fveq12d 6903 . . . 4 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))‘(𝐴(,]𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,]𝐵) ∪ {𝐵})))‘((𝐴(,)𝐵) ∪ {𝐵})))
5948, 58eleqtrd 2827 . . 3 (𝜑𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,]𝐵) ∪ {𝐵})))‘((𝐴(,)𝐵) ∪ {𝐵})))
6029, 31, 10, 12, 32, 59limcres 25859 . 2 (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵) = (𝐹 lim 𝐵))
618, 60eleqtrrd 2828 1 (𝜑 → (𝐹𝐵) ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3050  cdif 3941  cun 3942  cin 3943  wss 3944  {csn 4630   class class class wbr 5149  cres 5680  wf 6545  cfv 6549  (class class class)co 7419  cc 11138  cr 11139  *cxr 11279   < clt 11280  (,)cioo 13359  (,]cioc 13360  t crest 17405  TopOpenctopn 17406  fldccnfld 21296  Topctop 22839  TopOnctopon 22856  intcnt 22965   Cn ccn 23172   CnP ccnp 23173  cnccncf 24840   lim climc 25835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9436  df-sup 9467  df-inf 9468  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ioc 13364  df-icc 13366  df-fz 13520  df-seq 14003  df-exp 14063  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-struct 17119  df-slot 17154  df-ndx 17166  df-base 17184  df-plusg 17249  df-mulr 17250  df-starv 17251  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-rest 17407  df-topn 17408  df-topgen 17428  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-ntr 22968  df-cn 23175  df-cnp 23176  df-xms 24270  df-ms 24271  df-cncf 24842  df-limc 25839
This theorem is referenced by:  fourierdlem46  45678
  Copyright terms: Public domain W3C validator