Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioccncflimc Structured version   Visualization version   GIF version

Theorem ioccncflimc 43316
Description: Limit at the upper bound of a continuous function defined on a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ioccncflimc.a (𝜑𝐴 ∈ ℝ*)
ioccncflimc.b (𝜑𝐵 ∈ ℝ)
ioccncflimc.altb (𝜑𝐴 < 𝐵)
ioccncflimc.f (𝜑𝐹 ∈ ((𝐴(,]𝐵)–cn→ℂ))
Assertion
Ref Expression
ioccncflimc (𝜑 → (𝐹𝐵) ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵))

Proof of Theorem ioccncflimc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ioccncflimc.f . . 3 (𝜑𝐹 ∈ ((𝐴(,]𝐵)–cn→ℂ))
2 ioccncflimc.a . . . 4 (𝜑𝐴 ∈ ℝ*)
3 ioccncflimc.b . . . . 5 (𝜑𝐵 ∈ ℝ)
43rexrd 10956 . . . 4 (𝜑𝐵 ∈ ℝ*)
5 ioccncflimc.altb . . . 4 (𝜑𝐴 < 𝐵)
63leidd 11471 . . . 4 (𝜑𝐵𝐵)
72, 4, 4, 5, 6eliocd 42935 . . 3 (𝜑𝐵 ∈ (𝐴(,]𝐵))
81, 7cnlimci 24958 . 2 (𝜑 → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
9 cncfrss 23960 . . . . . . . 8 (𝐹 ∈ ((𝐴(,]𝐵)–cn→ℂ) → (𝐴(,]𝐵) ⊆ ℂ)
101, 9syl 17 . . . . . . 7 (𝜑 → (𝐴(,]𝐵) ⊆ ℂ)
11 ssid 3939 . . . . . . 7 ℂ ⊆ ℂ
12 eqid 2738 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
13 eqid 2738 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵))
14 eqid 2738 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t ℂ) = ((TopOpen‘ℂfld) ↾t ℂ)
1512, 13, 14cncfcn 23979 . . . . . . 7 (((𝐴(,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,]𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
1610, 11, 15sylancl 585 . . . . . 6 (𝜑 → ((𝐴(,]𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
171, 16eleqtrd 2841 . . . . 5 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
1812cnfldtopon 23852 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
19 resttopon 22220 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,]𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) ∈ (TopOn‘(𝐴(,]𝐵)))
2018, 10, 19sylancr 586 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) ∈ (TopOn‘(𝐴(,]𝐵)))
2112cnfldtop 23853 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Top
22 unicntop 23855 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
2322restid 17061 . . . . . . . 8 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
2421, 23ax-mp 5 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
2524cnfldtopon 23852 . . . . . 6 ((TopOpen‘ℂfld) ↾t ℂ) ∈ (TopOn‘ℂ)
26 cncnp 22339 . . . . . 6 ((((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) ∈ (TopOn‘(𝐴(,]𝐵)) ∧ ((TopOpen‘ℂfld) ↾t ℂ) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)) ↔ (𝐹:(𝐴(,]𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,]𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) CnP ((TopOpen‘ℂfld) ↾t ℂ))‘𝑥))))
2720, 25, 26sylancl 585 . . . . 5 (𝜑 → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)) ↔ (𝐹:(𝐴(,]𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,]𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) CnP ((TopOpen‘ℂfld) ↾t ℂ))‘𝑥))))
2817, 27mpbid 231 . . . 4 (𝜑 → (𝐹:(𝐴(,]𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,]𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) CnP ((TopOpen‘ℂfld) ↾t ℂ))‘𝑥)))
2928simpld 494 . . 3 (𝜑𝐹:(𝐴(,]𝐵)⟶ℂ)
30 ioossioc 42920 . . . 4 (𝐴(,)𝐵) ⊆ (𝐴(,]𝐵)
3130a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,]𝐵))
32 eqid 2738 . . 3 ((TopOpen‘ℂfld) ↾t ((𝐴(,]𝐵) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴(,]𝐵) ∪ {𝐵}))
333recnd 10934 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
3422ntrtop 22129 . . . . . . . . 9 ((TopOpen‘ℂfld) ∈ Top → ((int‘(TopOpen‘ℂfld))‘ℂ) = ℂ)
3521, 34ax-mp 5 . . . . . . . 8 ((int‘(TopOpen‘ℂfld))‘ℂ) = ℂ
36 undif 4412 . . . . . . . . . . 11 ((𝐴(,]𝐵) ⊆ ℂ ↔ ((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵))) = ℂ)
3710, 36sylib 217 . . . . . . . . . 10 (𝜑 → ((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵))) = ℂ)
3837eqcomd 2744 . . . . . . . . 9 (𝜑 → ℂ = ((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵))))
3938fveq2d 6760 . . . . . . . 8 (𝜑 → ((int‘(TopOpen‘ℂfld))‘ℂ) = ((int‘(TopOpen‘ℂfld))‘((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵)))))
4035, 39eqtr3id 2793 . . . . . . 7 (𝜑 → ℂ = ((int‘(TopOpen‘ℂfld))‘((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵)))))
4133, 40eleqtrd 2841 . . . . . 6 (𝜑𝐵 ∈ ((int‘(TopOpen‘ℂfld))‘((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵)))))
4241, 7elind 4124 . . . . 5 (𝜑𝐵 ∈ (((int‘(TopOpen‘ℂfld))‘((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵)))) ∩ (𝐴(,]𝐵)))
4321a1i 11 . . . . . 6 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
44 ssid 3939 . . . . . . 7 (𝐴(,]𝐵) ⊆ (𝐴(,]𝐵)
4544a1i 11 . . . . . 6 (𝜑 → (𝐴(,]𝐵) ⊆ (𝐴(,]𝐵))
4622, 13restntr 22241 . . . . . 6 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴(,]𝐵) ⊆ ℂ ∧ (𝐴(,]𝐵) ⊆ (𝐴(,]𝐵)) → ((int‘((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))‘(𝐴(,]𝐵)) = (((int‘(TopOpen‘ℂfld))‘((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵)))) ∩ (𝐴(,]𝐵)))
4743, 10, 45, 46syl3anc 1369 . . . . 5 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))‘(𝐴(,]𝐵)) = (((int‘(TopOpen‘ℂfld))‘((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵)))) ∩ (𝐴(,]𝐵)))
4842, 47eleqtrrd 2842 . . . 4 (𝜑𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))‘(𝐴(,]𝐵)))
497snssd 4739 . . . . . . . . 9 (𝜑 → {𝐵} ⊆ (𝐴(,]𝐵))
50 ssequn2 4113 . . . . . . . . 9 ({𝐵} ⊆ (𝐴(,]𝐵) ↔ ((𝐴(,]𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
5149, 50sylib 217 . . . . . . . 8 (𝜑 → ((𝐴(,]𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
5251eqcomd 2744 . . . . . . 7 (𝜑 → (𝐴(,]𝐵) = ((𝐴(,]𝐵) ∪ {𝐵}))
5352oveq2d 7271 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) = ((TopOpen‘ℂfld) ↾t ((𝐴(,]𝐵) ∪ {𝐵})))
5453fveq2d 6760 . . . . 5 (𝜑 → (int‘((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵))) = (int‘((TopOpen‘ℂfld) ↾t ((𝐴(,]𝐵) ∪ {𝐵}))))
55 ioounsn 13138 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
562, 4, 5, 55syl3anc 1369 . . . . . 6 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
5756eqcomd 2744 . . . . 5 (𝜑 → (𝐴(,]𝐵) = ((𝐴(,)𝐵) ∪ {𝐵}))
5854, 57fveq12d 6763 . . . 4 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))‘(𝐴(,]𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,]𝐵) ∪ {𝐵})))‘((𝐴(,)𝐵) ∪ {𝐵})))
5948, 58eleqtrd 2841 . . 3 (𝜑𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,]𝐵) ∪ {𝐵})))‘((𝐴(,)𝐵) ∪ {𝐵})))
6029, 31, 10, 12, 32, 59limcres 24955 . 2 (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵) = (𝐹 lim 𝐵))
618, 60eleqtrrd 2842 1 (𝜑 → (𝐹𝐵) ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  cdif 3880  cun 3881  cin 3882  wss 3883  {csn 4558   class class class wbr 5070  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  *cxr 10939   < clt 10940  (,)cioo 13008  (,]cioc 13009  t crest 17048  TopOpenctopn 17049  fldccnfld 20510  Topctop 21950  TopOnctopon 21967  intcnt 22076   Cn ccn 22283   CnP ccnp 22284  cnccncf 23945   lim climc 24931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-icc 13015  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-topn 17051  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-ntr 22079  df-cn 22286  df-cnp 22287  df-xms 23381  df-ms 23382  df-cncf 23947  df-limc 24935
This theorem is referenced by:  fourierdlem46  43583
  Copyright terms: Public domain W3C validator