Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioccncflimc Structured version   Visualization version   GIF version

Theorem ioccncflimc 42527
Description: Limit at the upper bound of a continuous function defined on a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ioccncflimc.a (𝜑𝐴 ∈ ℝ*)
ioccncflimc.b (𝜑𝐵 ∈ ℝ)
ioccncflimc.altb (𝜑𝐴 < 𝐵)
ioccncflimc.f (𝜑𝐹 ∈ ((𝐴(,]𝐵)–cn→ℂ))
Assertion
Ref Expression
ioccncflimc (𝜑 → (𝐹𝐵) ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵))

Proof of Theorem ioccncflimc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ioccncflimc.f . . 3 (𝜑𝐹 ∈ ((𝐴(,]𝐵)–cn→ℂ))
2 ioccncflimc.a . . . 4 (𝜑𝐴 ∈ ℝ*)
3 ioccncflimc.b . . . . 5 (𝜑𝐵 ∈ ℝ)
43rexrd 10680 . . . 4 (𝜑𝐵 ∈ ℝ*)
5 ioccncflimc.altb . . . 4 (𝜑𝐴 < 𝐵)
63leidd 11195 . . . 4 (𝜑𝐵𝐵)
72, 4, 4, 5, 6eliocd 42144 . . 3 (𝜑𝐵 ∈ (𝐴(,]𝐵))
81, 7cnlimci 24492 . 2 (𝜑 → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
9 cncfrss 23496 . . . . . . . 8 (𝐹 ∈ ((𝐴(,]𝐵)–cn→ℂ) → (𝐴(,]𝐵) ⊆ ℂ)
101, 9syl 17 . . . . . . 7 (𝜑 → (𝐴(,]𝐵) ⊆ ℂ)
11 ssid 3937 . . . . . . 7 ℂ ⊆ ℂ
12 eqid 2798 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
13 eqid 2798 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵))
14 eqid 2798 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t ℂ) = ((TopOpen‘ℂfld) ↾t ℂ)
1512, 13, 14cncfcn 23515 . . . . . . 7 (((𝐴(,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,]𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
1610, 11, 15sylancl 589 . . . . . 6 (𝜑 → ((𝐴(,]𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
171, 16eleqtrd 2892 . . . . 5 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
1812cnfldtopon 23388 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
19 resttopon 21766 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,]𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) ∈ (TopOn‘(𝐴(,]𝐵)))
2018, 10, 19sylancr 590 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) ∈ (TopOn‘(𝐴(,]𝐵)))
2112cnfldtop 23389 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Top
22 unicntop 23391 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
2322restid 16699 . . . . . . . 8 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
2421, 23ax-mp 5 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
2524cnfldtopon 23388 . . . . . 6 ((TopOpen‘ℂfld) ↾t ℂ) ∈ (TopOn‘ℂ)
26 cncnp 21885 . . . . . 6 ((((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) ∈ (TopOn‘(𝐴(,]𝐵)) ∧ ((TopOpen‘ℂfld) ↾t ℂ) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)) ↔ (𝐹:(𝐴(,]𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,]𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) CnP ((TopOpen‘ℂfld) ↾t ℂ))‘𝑥))))
2720, 25, 26sylancl 589 . . . . 5 (𝜑 → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)) ↔ (𝐹:(𝐴(,]𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,]𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) CnP ((TopOpen‘ℂfld) ↾t ℂ))‘𝑥))))
2817, 27mpbid 235 . . . 4 (𝜑 → (𝐹:(𝐴(,]𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,]𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) CnP ((TopOpen‘ℂfld) ↾t ℂ))‘𝑥)))
2928simpld 498 . . 3 (𝜑𝐹:(𝐴(,]𝐵)⟶ℂ)
30 ioossioc 42129 . . . 4 (𝐴(,)𝐵) ⊆ (𝐴(,]𝐵)
3130a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,]𝐵))
32 eqid 2798 . . 3 ((TopOpen‘ℂfld) ↾t ((𝐴(,]𝐵) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴(,]𝐵) ∪ {𝐵}))
333recnd 10658 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
3422ntrtop 21675 . . . . . . . . 9 ((TopOpen‘ℂfld) ∈ Top → ((int‘(TopOpen‘ℂfld))‘ℂ) = ℂ)
3521, 34ax-mp 5 . . . . . . . 8 ((int‘(TopOpen‘ℂfld))‘ℂ) = ℂ
36 undif 4388 . . . . . . . . . . 11 ((𝐴(,]𝐵) ⊆ ℂ ↔ ((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵))) = ℂ)
3710, 36sylib 221 . . . . . . . . . 10 (𝜑 → ((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵))) = ℂ)
3837eqcomd 2804 . . . . . . . . 9 (𝜑 → ℂ = ((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵))))
3938fveq2d 6649 . . . . . . . 8 (𝜑 → ((int‘(TopOpen‘ℂfld))‘ℂ) = ((int‘(TopOpen‘ℂfld))‘((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵)))))
4035, 39syl5eqr 2847 . . . . . . 7 (𝜑 → ℂ = ((int‘(TopOpen‘ℂfld))‘((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵)))))
4133, 40eleqtrd 2892 . . . . . 6 (𝜑𝐵 ∈ ((int‘(TopOpen‘ℂfld))‘((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵)))))
4241, 7elind 4121 . . . . 5 (𝜑𝐵 ∈ (((int‘(TopOpen‘ℂfld))‘((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵)))) ∩ (𝐴(,]𝐵)))
4321a1i 11 . . . . . 6 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
44 ssid 3937 . . . . . . 7 (𝐴(,]𝐵) ⊆ (𝐴(,]𝐵)
4544a1i 11 . . . . . 6 (𝜑 → (𝐴(,]𝐵) ⊆ (𝐴(,]𝐵))
4622, 13restntr 21787 . . . . . 6 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴(,]𝐵) ⊆ ℂ ∧ (𝐴(,]𝐵) ⊆ (𝐴(,]𝐵)) → ((int‘((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))‘(𝐴(,]𝐵)) = (((int‘(TopOpen‘ℂfld))‘((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵)))) ∩ (𝐴(,]𝐵)))
4743, 10, 45, 46syl3anc 1368 . . . . 5 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))‘(𝐴(,]𝐵)) = (((int‘(TopOpen‘ℂfld))‘((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵)))) ∩ (𝐴(,]𝐵)))
4842, 47eleqtrrd 2893 . . . 4 (𝜑𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))‘(𝐴(,]𝐵)))
497snssd 4702 . . . . . . . . 9 (𝜑 → {𝐵} ⊆ (𝐴(,]𝐵))
50 ssequn2 4110 . . . . . . . . 9 ({𝐵} ⊆ (𝐴(,]𝐵) ↔ ((𝐴(,]𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
5149, 50sylib 221 . . . . . . . 8 (𝜑 → ((𝐴(,]𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
5251eqcomd 2804 . . . . . . 7 (𝜑 → (𝐴(,]𝐵) = ((𝐴(,]𝐵) ∪ {𝐵}))
5352oveq2d 7151 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) = ((TopOpen‘ℂfld) ↾t ((𝐴(,]𝐵) ∪ {𝐵})))
5453fveq2d 6649 . . . . 5 (𝜑 → (int‘((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵))) = (int‘((TopOpen‘ℂfld) ↾t ((𝐴(,]𝐵) ∪ {𝐵}))))
55 ioounsn 12855 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
562, 4, 5, 55syl3anc 1368 . . . . . 6 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
5756eqcomd 2804 . . . . 5 (𝜑 → (𝐴(,]𝐵) = ((𝐴(,)𝐵) ∪ {𝐵}))
5854, 57fveq12d 6652 . . . 4 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))‘(𝐴(,]𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,]𝐵) ∪ {𝐵})))‘((𝐴(,)𝐵) ∪ {𝐵})))
5948, 58eleqtrd 2892 . . 3 (𝜑𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,]𝐵) ∪ {𝐵})))‘((𝐴(,)𝐵) ∪ {𝐵})))
6029, 31, 10, 12, 32, 59limcres 24489 . 2 (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵) = (𝐹 lim 𝐵))
618, 60eleqtrrd 2893 1 (𝜑 → (𝐹𝐵) ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  cdif 3878  cun 3879  cin 3880  wss 3881  {csn 4525   class class class wbr 5030  cres 5521  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  *cxr 10663   < clt 10664  (,)cioo 12726  (,]cioc 12727  t crest 16686  TopOpenctopn 16687  fldccnfld 20091  Topctop 21498  TopOnctopon 21515  intcnt 21622   Cn ccn 21829   CnP ccnp 21830  cnccncf 23481   lim climc 24465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-icc 12733  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-rest 16688  df-topn 16689  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-ntr 21625  df-cn 21832  df-cnp 21833  df-xms 22927  df-ms 22928  df-cncf 23483  df-limc 24469
This theorem is referenced by:  fourierdlem46  42794
  Copyright terms: Public domain W3C validator