MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcncf2 Structured version   Visualization version   GIF version

Theorem elcncf2 24830
Description: Version of elcncf 24829 with arguments commuted. (Contributed by Mario Carneiro, 28-Apr-2014.)
Assertion
Ref Expression
elcncf2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐹,𝑥,𝑦,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧

Proof of Theorem elcncf2
StepHypRef Expression
1 elcncf 24829 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
2 simplll 773 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝐴 ⊆ ℂ)
3 simprl 769 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝑥𝐴)
42, 3sseldd 3983 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝑥 ∈ ℂ)
5 simprr 771 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝑤𝐴)
62, 5sseldd 3983 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝑤 ∈ ℂ)
74, 6abssubd 15440 . . . . . . . . . 10 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (abs‘(𝑥𝑤)) = (abs‘(𝑤𝑥)))
87breq1d 5162 . . . . . . . . 9 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → ((abs‘(𝑥𝑤)) < 𝑧 ↔ (abs‘(𝑤𝑥)) < 𝑧))
9 simpllr 774 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝐵 ⊆ ℂ)
10 simplr 767 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝐹:𝐴𝐵)
1110, 3ffvelcdmd 7100 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝐹𝑥) ∈ 𝐵)
129, 11sseldd 3983 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝐹𝑥) ∈ ℂ)
1310, 5ffvelcdmd 7100 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝐹𝑤) ∈ 𝐵)
149, 13sseldd 3983 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝐹𝑤) ∈ ℂ)
1512, 14abssubd 15440 . . . . . . . . . 10 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (abs‘((𝐹𝑥) − (𝐹𝑤))) = (abs‘((𝐹𝑤) − (𝐹𝑥))))
1615breq1d 5162 . . . . . . . . 9 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → ((abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦 ↔ (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))
178, 16imbi12d 343 . . . . . . . 8 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) ↔ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦)))
1817anassrs 466 . . . . . . 7 (((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑤𝐴) → (((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) ↔ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦)))
1918ralbidva 3173 . . . . . 6 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ 𝑥𝐴) → (∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) ↔ ∀𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦)))
2019rexbidv 3176 . . . . 5 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ 𝑥𝐴) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦)))
2120ralbidv 3175 . . . 4 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ 𝑥𝐴) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦)))
2221ralbidva 3173 . . 3 (((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) ↔ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦)))
2322pm5.32da 577 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → ((𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))))
241, 23bitrd 278 1 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2098  wral 3058  wrex 3067  wss 3949   class class class wbr 5152  wf 6549  cfv 6553  (class class class)co 7426  cc 11144   < clt 11286  cmin 11482  +crp 13014  abscabs 15221  cnccncf 24816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-2 12313  df-cj 15086  df-re 15087  df-im 15088  df-abs 15223  df-cncf 24818
This theorem is referenced by:  cncfi  24834  cncfcdm  24838  abscncf  24841  recncf  24842  imcncf  24843  cjcncf  24844  mulc1cncf  24845  cncfco  24847  volcn  25555  ftc1a  25992  ulmcn  26355  dnicn  36000  ftc1anc  37207
  Copyright terms: Public domain W3C validator