MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcncf2 Structured version   Visualization version   GIF version

Theorem elcncf2 24916
Description: Version of elcncf 24915 with arguments commuted. (Contributed by Mario Carneiro, 28-Apr-2014.)
Assertion
Ref Expression
elcncf2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐹,𝑥,𝑦,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧

Proof of Theorem elcncf2
StepHypRef Expression
1 elcncf 24915 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
2 simplll 775 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝐴 ⊆ ℂ)
3 simprl 771 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝑥𝐴)
42, 3sseldd 3984 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝑥 ∈ ℂ)
5 simprr 773 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝑤𝐴)
62, 5sseldd 3984 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝑤 ∈ ℂ)
74, 6abssubd 15492 . . . . . . . . . 10 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (abs‘(𝑥𝑤)) = (abs‘(𝑤𝑥)))
87breq1d 5153 . . . . . . . . 9 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → ((abs‘(𝑥𝑤)) < 𝑧 ↔ (abs‘(𝑤𝑥)) < 𝑧))
9 simpllr 776 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝐵 ⊆ ℂ)
10 simplr 769 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝐹:𝐴𝐵)
1110, 3ffvelcdmd 7105 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝐹𝑥) ∈ 𝐵)
129, 11sseldd 3984 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝐹𝑥) ∈ ℂ)
1310, 5ffvelcdmd 7105 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝐹𝑤) ∈ 𝐵)
149, 13sseldd 3984 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝐹𝑤) ∈ ℂ)
1512, 14abssubd 15492 . . . . . . . . . 10 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (abs‘((𝐹𝑥) − (𝐹𝑤))) = (abs‘((𝐹𝑤) − (𝐹𝑥))))
1615breq1d 5153 . . . . . . . . 9 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → ((abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦 ↔ (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))
178, 16imbi12d 344 . . . . . . . 8 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) ↔ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦)))
1817anassrs 467 . . . . . . 7 (((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑤𝐴) → (((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) ↔ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦)))
1918ralbidva 3176 . . . . . 6 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ 𝑥𝐴) → (∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) ↔ ∀𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦)))
2019rexbidv 3179 . . . . 5 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ 𝑥𝐴) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦)))
2120ralbidv 3178 . . . 4 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ 𝑥𝐴) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦)))
2221ralbidva 3176 . . 3 (((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) ↔ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦)))
2322pm5.32da 579 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → ((𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))))
241, 23bitrd 279 1 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3061  wrex 3070  wss 3951   class class class wbr 5143  wf 6557  cfv 6561  (class class class)co 7431  cc 11153   < clt 11295  cmin 11492  +crp 13034  abscabs 15273  cnccncf 24902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-2 12329  df-cj 15138  df-re 15139  df-im 15140  df-abs 15275  df-cncf 24904
This theorem is referenced by:  cncfi  24920  cncfcdm  24924  abscncf  24927  recncf  24928  imcncf  24929  cjcncf  24930  mulc1cncf  24931  cncfco  24933  volcn  25641  ftc1a  26078  ulmcn  26442  dnicn  36493  ftc1anc  37708
  Copyright terms: Public domain W3C validator