MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntrnsg Structured version   Visualization version   GIF version

Theorem cntrnsg 19259
Description: The center of a group is a normal subgroup. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypothesis
Ref Expression
cntrnsg.z 𝑍 = (Cntr‘𝑀)
Assertion
Ref Expression
cntrnsg (𝑀 ∈ Grp → 𝑍 ∈ (NrmSGrp‘𝑀))

Proof of Theorem cntrnsg
StepHypRef Expression
1 cntrnsg.z . . . 4 𝑍 = (Cntr‘𝑀)
2 eqid 2729 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
3 eqid 2729 . . . . 5 (Cntz‘𝑀) = (Cntz‘𝑀)
42, 3cntrval 19234 . . . 4 ((Cntz‘𝑀)‘(Base‘𝑀)) = (Cntr‘𝑀)
51, 4eqtr4i 2755 . . 3 𝑍 = ((Cntz‘𝑀)‘(Base‘𝑀))
6 ssid 3966 . . . 4 (Base‘𝑀) ⊆ (Base‘𝑀)
72, 3cntzsubg 19254 . . . 4 ((𝑀 ∈ Grp ∧ (Base‘𝑀) ⊆ (Base‘𝑀)) → ((Cntz‘𝑀)‘(Base‘𝑀)) ∈ (SubGrp‘𝑀))
86, 7mpan2 691 . . 3 (𝑀 ∈ Grp → ((Cntz‘𝑀)‘(Base‘𝑀)) ∈ (SubGrp‘𝑀))
95, 8eqeltrid 2832 . 2 (𝑀 ∈ Grp → 𝑍 ∈ (SubGrp‘𝑀))
10 ssid 3966 . 2 𝑍𝑍
111cntrsubgnsg 19258 . 2 ((𝑍 ∈ (SubGrp‘𝑀) ∧ 𝑍𝑍) → 𝑍 ∈ (NrmSGrp‘𝑀))
129, 10, 11sylancl 586 1 (𝑀 ∈ Grp → 𝑍 ∈ (NrmSGrp‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3911  cfv 6499  Basecbs 17156  Grpcgrp 18848  SubGrpcsubg 19035  NrmSGrpcnsg 19036  Cntzccntz 19230  Cntrccntr 19231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-nn 12165  df-2 12227  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-ress 17178  df-plusg 17210  df-0g 17381  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-nsg 19039  df-cntz 19232  df-cntr 19233
This theorem is referenced by:  simpcntrab  46862
  Copyright terms: Public domain W3C validator