![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntrss | Structured version Visualization version GIF version |
Description: The center is a subset of the base field. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
Ref | Expression |
---|---|
cntrss.1 | โข ๐ต = (Baseโ๐) |
Ref | Expression |
---|---|
cntrss | โข (Cntrโ๐) โ ๐ต |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntrss.1 | . . 3 โข ๐ต = (Baseโ๐) | |
2 | eqid 2730 | . . 3 โข (Cntzโ๐) = (Cntzโ๐) | |
3 | 1, 2 | cntrval 19224 | . 2 โข ((Cntzโ๐)โ๐ต) = (Cntrโ๐) |
4 | 1, 2 | cntzssv 19233 | . 2 โข ((Cntzโ๐)โ๐ต) โ ๐ต |
5 | 3, 4 | eqsstrri 4016 | 1 โข (Cntrโ๐) โ ๐ต |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 โ wss 3947 โcfv 6542 Basecbs 17148 Cntzccntz 19220 Cntrccntr 19221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-cntz 19222 df-cntr 19223 |
This theorem is referenced by: cntrcmnd 19751 primefld 20564 |
Copyright terms: Public domain | W3C validator |