| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntri | Structured version Visualization version GIF version | ||
| Description: Defining property of the center of a group. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| Ref | Expression |
|---|---|
| cntri.b | ⊢ 𝐵 = (Base‘𝑀) |
| cntri.p | ⊢ + = (+g‘𝑀) |
| cntri.z | ⊢ 𝑍 = (Cntr‘𝑀) |
| Ref | Expression |
|---|---|
| cntri | ⊢ ((𝑋 ∈ 𝑍 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntri.z | . . . 4 ⊢ 𝑍 = (Cntr‘𝑀) | |
| 2 | cntri.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (Cntz‘𝑀) = (Cntz‘𝑀) | |
| 4 | 2, 3 | cntrval 19251 | . . . 4 ⊢ ((Cntz‘𝑀)‘𝐵) = (Cntr‘𝑀) |
| 5 | 1, 4 | eqtr4i 2755 | . . 3 ⊢ 𝑍 = ((Cntz‘𝑀)‘𝐵) |
| 6 | 5 | eleq2i 2820 | . 2 ⊢ (𝑋 ∈ 𝑍 ↔ 𝑋 ∈ ((Cntz‘𝑀)‘𝐵)) |
| 7 | cntri.p | . . 3 ⊢ + = (+g‘𝑀) | |
| 8 | 7, 3 | cntzi 19261 | . 2 ⊢ ((𝑋 ∈ ((Cntz‘𝑀)‘𝐵) ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| 9 | 6, 8 | sylanb 581 | 1 ⊢ ((𝑋 ∈ 𝑍 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 Cntzccntz 19247 Cntrccntr 19248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-cntz 19249 df-cntr 19250 |
| This theorem is referenced by: cntrcmnd 19772 primefld 20714 sraassab 21777 zrhcntr 33969 |
| Copyright terms: Public domain | W3C validator |