| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntri | Structured version Visualization version GIF version | ||
| Description: Defining property of the center of a group. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| Ref | Expression |
|---|---|
| cntri.b | ⊢ 𝐵 = (Base‘𝑀) |
| cntri.p | ⊢ + = (+g‘𝑀) |
| cntri.z | ⊢ 𝑍 = (Cntr‘𝑀) |
| Ref | Expression |
|---|---|
| cntri | ⊢ ((𝑋 ∈ 𝑍 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntri.z | . . . 4 ⊢ 𝑍 = (Cntr‘𝑀) | |
| 2 | cntri.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 3 | eqid 2734 | . . . . 5 ⊢ (Cntz‘𝑀) = (Cntz‘𝑀) | |
| 4 | 2, 3 | cntrval 19307 | . . . 4 ⊢ ((Cntz‘𝑀)‘𝐵) = (Cntr‘𝑀) |
| 5 | 1, 4 | eqtr4i 2760 | . . 3 ⊢ 𝑍 = ((Cntz‘𝑀)‘𝐵) |
| 6 | 5 | eleq2i 2825 | . 2 ⊢ (𝑋 ∈ 𝑍 ↔ 𝑋 ∈ ((Cntz‘𝑀)‘𝐵)) |
| 7 | cntri.p | . . 3 ⊢ + = (+g‘𝑀) | |
| 8 | 7, 3 | cntzi 19317 | . 2 ⊢ ((𝑋 ∈ ((Cntz‘𝑀)‘𝐵) ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| 9 | 6, 8 | sylanb 581 | 1 ⊢ ((𝑋 ∈ 𝑍 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ‘cfv 6541 (class class class)co 7413 Basecbs 17230 +gcplusg 17274 Cntzccntz 19303 Cntrccntr 19304 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-cntz 19305 df-cntr 19306 |
| This theorem is referenced by: cntrcmnd 19829 primefld 20775 sraassab 21843 zrhcntr 33955 |
| Copyright terms: Public domain | W3C validator |