![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntri | Structured version Visualization version GIF version |
Description: Defining property of the center of a group. (Contributed by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
cntri.b | ⊢ 𝐵 = (Base‘𝑀) |
cntri.p | ⊢ + = (+g‘𝑀) |
cntri.z | ⊢ 𝑍 = (Cntr‘𝑀) |
Ref | Expression |
---|---|
cntri | ⊢ ((𝑋 ∈ 𝑍 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntri.z | . . . 4 ⊢ 𝑍 = (Cntr‘𝑀) | |
2 | cntri.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
3 | eqid 2725 | . . . . 5 ⊢ (Cntz‘𝑀) = (Cntz‘𝑀) | |
4 | 2, 3 | cntrval 19287 | . . . 4 ⊢ ((Cntz‘𝑀)‘𝐵) = (Cntr‘𝑀) |
5 | 1, 4 | eqtr4i 2756 | . . 3 ⊢ 𝑍 = ((Cntz‘𝑀)‘𝐵) |
6 | 5 | eleq2i 2817 | . 2 ⊢ (𝑋 ∈ 𝑍 ↔ 𝑋 ∈ ((Cntz‘𝑀)‘𝐵)) |
7 | cntri.p | . . 3 ⊢ + = (+g‘𝑀) | |
8 | 7, 3 | cntzi 19297 | . 2 ⊢ ((𝑋 ∈ ((Cntz‘𝑀)‘𝐵) ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
9 | 6, 8 | sylanb 579 | 1 ⊢ ((𝑋 ∈ 𝑍 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ‘cfv 6549 (class class class)co 7419 Basecbs 17188 +gcplusg 17241 Cntzccntz 19283 Cntrccntr 19284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-cntz 19285 df-cntr 19286 |
This theorem is referenced by: cntrcmnd 19814 primefld 20710 sraassab 21823 |
Copyright terms: Public domain | W3C validator |