Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cntri | Structured version Visualization version GIF version |
Description: Defining property of the center of a group. (Contributed by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
cntri.b | ⊢ 𝐵 = (Base‘𝑀) |
cntri.p | ⊢ + = (+g‘𝑀) |
cntri.z | ⊢ 𝑍 = (Cntr‘𝑀) |
Ref | Expression |
---|---|
cntri | ⊢ ((𝑋 ∈ 𝑍 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntri.z | . . . 4 ⊢ 𝑍 = (Cntr‘𝑀) | |
2 | cntri.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
3 | eqid 2738 | . . . . 5 ⊢ (Cntz‘𝑀) = (Cntz‘𝑀) | |
4 | 2, 3 | cntrval 18925 | . . . 4 ⊢ ((Cntz‘𝑀)‘𝐵) = (Cntr‘𝑀) |
5 | 1, 4 | eqtr4i 2769 | . . 3 ⊢ 𝑍 = ((Cntz‘𝑀)‘𝐵) |
6 | 5 | eleq2i 2830 | . 2 ⊢ (𝑋 ∈ 𝑍 ↔ 𝑋 ∈ ((Cntz‘𝑀)‘𝐵)) |
7 | cntri.p | . . 3 ⊢ + = (+g‘𝑀) | |
8 | 7, 3 | cntzi 18935 | . 2 ⊢ ((𝑋 ∈ ((Cntz‘𝑀)‘𝐵) ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
9 | 6, 8 | sylanb 581 | 1 ⊢ ((𝑋 ∈ 𝑍 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 Cntzccntz 18921 Cntrccntr 18922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-cntz 18923 df-cntr 18924 |
This theorem is referenced by: cntrcmnd 19443 primefld 20073 |
Copyright terms: Public domain | W3C validator |