Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cntri | Structured version Visualization version GIF version |
Description: Defining property of the center of a group. (Contributed by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
cntri.b | ⊢ 𝐵 = (Base‘𝑀) |
cntri.p | ⊢ + = (+g‘𝑀) |
cntri.z | ⊢ 𝑍 = (Cntr‘𝑀) |
Ref | Expression |
---|---|
cntri | ⊢ ((𝑋 ∈ 𝑍 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntri.z | . . . 4 ⊢ 𝑍 = (Cntr‘𝑀) | |
2 | cntri.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
3 | eqid 2740 | . . . . 5 ⊢ (Cntz‘𝑀) = (Cntz‘𝑀) | |
4 | 2, 3 | cntrval 18915 | . . . 4 ⊢ ((Cntz‘𝑀)‘𝐵) = (Cntr‘𝑀) |
5 | 1, 4 | eqtr4i 2771 | . . 3 ⊢ 𝑍 = ((Cntz‘𝑀)‘𝐵) |
6 | 5 | eleq2i 2832 | . 2 ⊢ (𝑋 ∈ 𝑍 ↔ 𝑋 ∈ ((Cntz‘𝑀)‘𝐵)) |
7 | cntri.p | . . 3 ⊢ + = (+g‘𝑀) | |
8 | 7, 3 | cntzi 18925 | . 2 ⊢ ((𝑋 ∈ ((Cntz‘𝑀)‘𝐵) ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
9 | 6, 8 | sylanb 581 | 1 ⊢ ((𝑋 ∈ 𝑍 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ‘cfv 6431 (class class class)co 7269 Basecbs 16902 +gcplusg 16952 Cntzccntz 18911 Cntrccntr 18912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-ov 7272 df-cntz 18913 df-cntr 18914 |
This theorem is referenced by: cntrcmnd 19433 primefld 20063 |
Copyright terms: Public domain | W3C validator |