MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntri Structured version   Visualization version   GIF version

Theorem cntri 19300
Description: Defining property of the center of a group. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
cntri.b 𝐵 = (Base‘𝑀)
cntri.p + = (+g𝑀)
cntri.z 𝑍 = (Cntr‘𝑀)
Assertion
Ref Expression
cntri ((𝑋𝑍𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))

Proof of Theorem cntri
StepHypRef Expression
1 cntri.z . . . 4 𝑍 = (Cntr‘𝑀)
2 cntri.b . . . . 5 𝐵 = (Base‘𝑀)
3 eqid 2725 . . . . 5 (Cntz‘𝑀) = (Cntz‘𝑀)
42, 3cntrval 19287 . . . 4 ((Cntz‘𝑀)‘𝐵) = (Cntr‘𝑀)
51, 4eqtr4i 2756 . . 3 𝑍 = ((Cntz‘𝑀)‘𝐵)
65eleq2i 2817 . 2 (𝑋𝑍𝑋 ∈ ((Cntz‘𝑀)‘𝐵))
7 cntri.p . . 3 + = (+g𝑀)
87, 3cntzi 19297 . 2 ((𝑋 ∈ ((Cntz‘𝑀)‘𝐵) ∧ 𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
96, 8sylanb 579 1 ((𝑋𝑍𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cfv 6549  (class class class)co 7419  Basecbs 17188  +gcplusg 17241  Cntzccntz 19283  Cntrccntr 19284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-cntz 19285  df-cntr 19286
This theorem is referenced by:  cntrcmnd  19814  primefld  20710  sraassab  21823
  Copyright terms: Public domain W3C validator