MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntri Structured version   Visualization version   GIF version

Theorem cntri 19211
Description: Defining property of the center of a group. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
cntri.b 𝐵 = (Base‘𝑀)
cntri.p + = (+g𝑀)
cntri.z 𝑍 = (Cntr‘𝑀)
Assertion
Ref Expression
cntri ((𝑋𝑍𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))

Proof of Theorem cntri
StepHypRef Expression
1 cntri.z . . . 4 𝑍 = (Cntr‘𝑀)
2 cntri.b . . . . 5 𝐵 = (Base‘𝑀)
3 eqid 2729 . . . . 5 (Cntz‘𝑀) = (Cntz‘𝑀)
42, 3cntrval 19198 . . . 4 ((Cntz‘𝑀)‘𝐵) = (Cntr‘𝑀)
51, 4eqtr4i 2755 . . 3 𝑍 = ((Cntz‘𝑀)‘𝐵)
65eleq2i 2820 . 2 (𝑋𝑍𝑋 ∈ ((Cntz‘𝑀)‘𝐵))
7 cntri.p . . 3 + = (+g𝑀)
87, 3cntzi 19208 . 2 ((𝑋 ∈ ((Cntz‘𝑀)‘𝐵) ∧ 𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
96, 8sylanb 581 1 ((𝑋𝑍𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  Cntzccntz 19194  Cntrccntr 19195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-cntz 19196  df-cntr 19197
This theorem is referenced by:  cntrcmnd  19721  primefld  20690  sraassab  21775  zrhcntr  33952
  Copyright terms: Public domain W3C validator