MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntri Structured version   Visualization version   GIF version

Theorem cntri 19320
Description: Defining property of the center of a group. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
cntri.b 𝐵 = (Base‘𝑀)
cntri.p + = (+g𝑀)
cntri.z 𝑍 = (Cntr‘𝑀)
Assertion
Ref Expression
cntri ((𝑋𝑍𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))

Proof of Theorem cntri
StepHypRef Expression
1 cntri.z . . . 4 𝑍 = (Cntr‘𝑀)
2 cntri.b . . . . 5 𝐵 = (Base‘𝑀)
3 eqid 2734 . . . . 5 (Cntz‘𝑀) = (Cntz‘𝑀)
42, 3cntrval 19307 . . . 4 ((Cntz‘𝑀)‘𝐵) = (Cntr‘𝑀)
51, 4eqtr4i 2760 . . 3 𝑍 = ((Cntz‘𝑀)‘𝐵)
65eleq2i 2825 . 2 (𝑋𝑍𝑋 ∈ ((Cntz‘𝑀)‘𝐵))
7 cntri.p . . 3 + = (+g𝑀)
87, 3cntzi 19317 . 2 ((𝑋 ∈ ((Cntz‘𝑀)‘𝐵) ∧ 𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
96, 8sylanb 581 1 ((𝑋𝑍𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cfv 6541  (class class class)co 7413  Basecbs 17230  +gcplusg 17274  Cntzccntz 19303  Cntrccntr 19304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-cntz 19305  df-cntr 19306
This theorem is referenced by:  cntrcmnd  19829  primefld  20775  sraassab  21843  zrhcntr  33955
  Copyright terms: Public domain W3C validator