![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elcntr | Structured version Visualization version GIF version |
Description: Elementhood in the center of a magma. (Contributed by SN, 21-Mar-2025.) |
Ref | Expression |
---|---|
elcntr.b | ⊢ 𝐵 = (Base‘𝑀) |
elcntr.p | ⊢ + = (+g‘𝑀) |
elcntr.z | ⊢ 𝑍 = (Cntr‘𝑀) |
Ref | Expression |
---|---|
elcntr | ⊢ (𝐴 ∈ 𝑍 ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 (𝐴 + 𝑦) = (𝑦 + 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elcntr.z | . . . 4 ⊢ 𝑍 = (Cntr‘𝑀) | |
2 | elcntr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
3 | eqid 2740 | . . . . 5 ⊢ (Cntz‘𝑀) = (Cntz‘𝑀) | |
4 | 2, 3 | cntrval 19359 | . . . 4 ⊢ ((Cntz‘𝑀)‘𝐵) = (Cntr‘𝑀) |
5 | 1, 4 | eqtr4i 2771 | . . 3 ⊢ 𝑍 = ((Cntz‘𝑀)‘𝐵) |
6 | 5 | eleq2i 2836 | . 2 ⊢ (𝐴 ∈ 𝑍 ↔ 𝐴 ∈ ((Cntz‘𝑀)‘𝐵)) |
7 | ssid 4031 | . . 3 ⊢ 𝐵 ⊆ 𝐵 | |
8 | elcntr.p | . . . 4 ⊢ + = (+g‘𝑀) | |
9 | 2, 8, 3 | elcntz 19362 | . . 3 ⊢ (𝐵 ⊆ 𝐵 → (𝐴 ∈ ((Cntz‘𝑀)‘𝐵) ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 (𝐴 + 𝑦) = (𝑦 + 𝐴)))) |
10 | 7, 9 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ ((Cntz‘𝑀)‘𝐵) ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 (𝐴 + 𝑦) = (𝑦 + 𝐴))) |
11 | 6, 10 | bitri 275 | 1 ⊢ (𝐴 ∈ 𝑍 ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 (𝐴 + 𝑦) = (𝑦 + 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Cntzccntz 19355 Cntrccntr 19356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-cntz 19357 df-cntr 19358 |
This theorem is referenced by: sraassab 21911 |
Copyright terms: Public domain | W3C validator |