MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcntr Structured version   Visualization version   GIF version

Theorem elcntr 19244
Description: Elementhood in the center of a magma. (Contributed by SN, 21-Mar-2025.)
Hypotheses
Ref Expression
elcntr.b 𝐵 = (Base‘𝑀)
elcntr.p + = (+g𝑀)
elcntr.z 𝑍 = (Cntr‘𝑀)
Assertion
Ref Expression
elcntr (𝐴𝑍 ↔ (𝐴𝐵 ∧ ∀𝑦𝐵 (𝐴 + 𝑦) = (𝑦 + 𝐴)))
Distinct variable groups:   𝑦, +   𝑦,𝐴   𝑦,𝐵   𝑦,𝑀
Allowed substitution hint:   𝑍(𝑦)

Proof of Theorem elcntr
StepHypRef Expression
1 elcntr.z . . . 4 𝑍 = (Cntr‘𝑀)
2 elcntr.b . . . . 5 𝐵 = (Base‘𝑀)
3 eqid 2729 . . . . 5 (Cntz‘𝑀) = (Cntz‘𝑀)
42, 3cntrval 19233 . . . 4 ((Cntz‘𝑀)‘𝐵) = (Cntr‘𝑀)
51, 4eqtr4i 2755 . . 3 𝑍 = ((Cntz‘𝑀)‘𝐵)
65eleq2i 2820 . 2 (𝐴𝑍𝐴 ∈ ((Cntz‘𝑀)‘𝐵))
7 ssid 3966 . . 3 𝐵𝐵
8 elcntr.p . . . 4 + = (+g𝑀)
92, 8, 3elcntz 19236 . . 3 (𝐵𝐵 → (𝐴 ∈ ((Cntz‘𝑀)‘𝐵) ↔ (𝐴𝐵 ∧ ∀𝑦𝐵 (𝐴 + 𝑦) = (𝑦 + 𝐴))))
107, 9ax-mp 5 . 2 (𝐴 ∈ ((Cntz‘𝑀)‘𝐵) ↔ (𝐴𝐵 ∧ ∀𝑦𝐵 (𝐴 + 𝑦) = (𝑦 + 𝐴)))
116, 10bitri 275 1 (𝐴𝑍 ↔ (𝐴𝐵 ∧ ∀𝑦𝐵 (𝐴 + 𝑦) = (𝑦 + 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3911  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  Cntzccntz 19229  Cntrccntr 19230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-cntz 19231  df-cntr 19232
This theorem is referenced by:  sraassab  21810  cntrval2  33143  zrhcntr  33962  elmgpcntrd  48986
  Copyright terms: Public domain W3C validator