MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntrsubgnsg Structured version   Visualization version   GIF version

Theorem cntrsubgnsg 18935
Description: A central subgroup is normal. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypothesis
Ref Expression
cntrnsg.z 𝑍 = (Cntr‘𝑀)
Assertion
Ref Expression
cntrsubgnsg ((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) → 𝑋 ∈ (NrmSGrp‘𝑀))

Proof of Theorem cntrsubgnsg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 483 . 2 ((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) → 𝑋 ∈ (SubGrp‘𝑀))
2 simplr 766 . . . . . . . . 9 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑋𝑍)
3 simprr 770 . . . . . . . . 9 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑦𝑋)
42, 3sseldd 3922 . . . . . . . 8 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑦𝑍)
5 eqid 2738 . . . . . . . . . 10 (Base‘𝑀) = (Base‘𝑀)
6 eqid 2738 . . . . . . . . . 10 (Cntz‘𝑀) = (Cntz‘𝑀)
75, 6cntrval 18913 . . . . . . . . 9 ((Cntz‘𝑀)‘(Base‘𝑀)) = (Cntr‘𝑀)
8 cntrnsg.z . . . . . . . . 9 𝑍 = (Cntr‘𝑀)
97, 8eqtr4i 2769 . . . . . . . 8 ((Cntz‘𝑀)‘(Base‘𝑀)) = 𝑍
104, 9eleqtrrdi 2850 . . . . . . 7 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑦 ∈ ((Cntz‘𝑀)‘(Base‘𝑀)))
11 simprl 768 . . . . . . 7 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑥 ∈ (Base‘𝑀))
12 eqid 2738 . . . . . . . 8 (+g𝑀) = (+g𝑀)
1312, 6cntzi 18923 . . . . . . 7 ((𝑦 ∈ ((Cntz‘𝑀)‘(Base‘𝑀)) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
1410, 11, 13syl2anc 584 . . . . . 6 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
1514oveq1d 7283 . . . . 5 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → ((𝑦(+g𝑀)𝑥)(-g𝑀)𝑥) = ((𝑥(+g𝑀)𝑦)(-g𝑀)𝑥))
16 subgrcl 18748 . . . . . . 7 (𝑋 ∈ (SubGrp‘𝑀) → 𝑀 ∈ Grp)
1716ad2antrr 723 . . . . . 6 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑀 ∈ Grp)
185subgss 18744 . . . . . . . 8 (𝑋 ∈ (SubGrp‘𝑀) → 𝑋 ⊆ (Base‘𝑀))
1918ad2antrr 723 . . . . . . 7 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑋 ⊆ (Base‘𝑀))
2019, 3sseldd 3922 . . . . . 6 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑦 ∈ (Base‘𝑀))
21 eqid 2738 . . . . . . 7 (-g𝑀) = (-g𝑀)
225, 12, 21grppncan 18654 . . . . . 6 ((𝑀 ∈ Grp ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → ((𝑦(+g𝑀)𝑥)(-g𝑀)𝑥) = 𝑦)
2317, 20, 11, 22syl3anc 1370 . . . . 5 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → ((𝑦(+g𝑀)𝑥)(-g𝑀)𝑥) = 𝑦)
2415, 23eqtr3d 2780 . . . 4 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → ((𝑥(+g𝑀)𝑦)(-g𝑀)𝑥) = 𝑦)
2524, 3eqeltrd 2839 . . 3 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → ((𝑥(+g𝑀)𝑦)(-g𝑀)𝑥) ∈ 𝑋)
2625ralrimivva 3120 . 2 ((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) → ∀𝑥 ∈ (Base‘𝑀)∀𝑦𝑋 ((𝑥(+g𝑀)𝑦)(-g𝑀)𝑥) ∈ 𝑋)
275, 12, 21isnsg3 18776 . 2 (𝑋 ∈ (NrmSGrp‘𝑀) ↔ (𝑋 ∈ (SubGrp‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦𝑋 ((𝑥(+g𝑀)𝑦)(-g𝑀)𝑥) ∈ 𝑋))
281, 26, 27sylanbrc 583 1 ((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) → 𝑋 ∈ (NrmSGrp‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wss 3887  cfv 6427  (class class class)co 7268  Basecbs 16900  +gcplusg 16950  Grpcgrp 18565  -gcsg 18567  SubGrpcsubg 18737  NrmSGrpcnsg 18738  Cntzccntz 18909  Cntrccntr 18910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5485  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7821  df-2nd 7822  df-0g 17140  df-mgm 18314  df-sgrp 18363  df-mnd 18374  df-grp 18568  df-minusg 18569  df-sbg 18570  df-subg 18740  df-nsg 18741  df-cntz 18911  df-cntr 18912
This theorem is referenced by:  cntrnsg  18936
  Copyright terms: Public domain W3C validator