MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntrsubgnsg Structured version   Visualization version   GIF version

Theorem cntrsubgnsg 19222
Description: A central subgroup is normal. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypothesis
Ref Expression
cntrnsg.z 𝑍 = (Cntr‘𝑀)
Assertion
Ref Expression
cntrsubgnsg ((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) → 𝑋 ∈ (NrmSGrp‘𝑀))

Proof of Theorem cntrsubgnsg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) → 𝑋 ∈ (SubGrp‘𝑀))
2 simplr 768 . . . . . . . . 9 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑋𝑍)
3 simprr 772 . . . . . . . . 9 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑦𝑋)
42, 3sseldd 3936 . . . . . . . 8 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑦𝑍)
5 eqid 2729 . . . . . . . . . 10 (Base‘𝑀) = (Base‘𝑀)
6 eqid 2729 . . . . . . . . . 10 (Cntz‘𝑀) = (Cntz‘𝑀)
75, 6cntrval 19198 . . . . . . . . 9 ((Cntz‘𝑀)‘(Base‘𝑀)) = (Cntr‘𝑀)
8 cntrnsg.z . . . . . . . . 9 𝑍 = (Cntr‘𝑀)
97, 8eqtr4i 2755 . . . . . . . 8 ((Cntz‘𝑀)‘(Base‘𝑀)) = 𝑍
104, 9eleqtrrdi 2839 . . . . . . 7 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑦 ∈ ((Cntz‘𝑀)‘(Base‘𝑀)))
11 simprl 770 . . . . . . 7 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑥 ∈ (Base‘𝑀))
12 eqid 2729 . . . . . . . 8 (+g𝑀) = (+g𝑀)
1312, 6cntzi 19208 . . . . . . 7 ((𝑦 ∈ ((Cntz‘𝑀)‘(Base‘𝑀)) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
1410, 11, 13syl2anc 584 . . . . . 6 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
1514oveq1d 7364 . . . . 5 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → ((𝑦(+g𝑀)𝑥)(-g𝑀)𝑥) = ((𝑥(+g𝑀)𝑦)(-g𝑀)𝑥))
16 subgrcl 19010 . . . . . . 7 (𝑋 ∈ (SubGrp‘𝑀) → 𝑀 ∈ Grp)
1716ad2antrr 726 . . . . . 6 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑀 ∈ Grp)
185subgss 19006 . . . . . . . 8 (𝑋 ∈ (SubGrp‘𝑀) → 𝑋 ⊆ (Base‘𝑀))
1918ad2antrr 726 . . . . . . 7 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑋 ⊆ (Base‘𝑀))
2019, 3sseldd 3936 . . . . . 6 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑦 ∈ (Base‘𝑀))
21 eqid 2729 . . . . . . 7 (-g𝑀) = (-g𝑀)
225, 12, 21grppncan 18910 . . . . . 6 ((𝑀 ∈ Grp ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → ((𝑦(+g𝑀)𝑥)(-g𝑀)𝑥) = 𝑦)
2317, 20, 11, 22syl3anc 1373 . . . . 5 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → ((𝑦(+g𝑀)𝑥)(-g𝑀)𝑥) = 𝑦)
2415, 23eqtr3d 2766 . . . 4 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → ((𝑥(+g𝑀)𝑦)(-g𝑀)𝑥) = 𝑦)
2524, 3eqeltrd 2828 . . 3 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → ((𝑥(+g𝑀)𝑦)(-g𝑀)𝑥) ∈ 𝑋)
2625ralrimivva 3172 . 2 ((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) → ∀𝑥 ∈ (Base‘𝑀)∀𝑦𝑋 ((𝑥(+g𝑀)𝑦)(-g𝑀)𝑥) ∈ 𝑋)
275, 12, 21isnsg3 19039 . 2 (𝑋 ∈ (NrmSGrp‘𝑀) ↔ (𝑋 ∈ (SubGrp‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦𝑋 ((𝑥(+g𝑀)𝑦)(-g𝑀)𝑥) ∈ 𝑋))
281, 26, 27sylanbrc 583 1 ((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) → 𝑋 ∈ (NrmSGrp‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3903  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  Grpcgrp 18812  -gcsg 18814  SubGrpcsubg 18999  NrmSGrpcnsg 19000  Cntzccntz 19194  Cntrccntr 19195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-nsg 19003  df-cntz 19196  df-cntr 19197
This theorem is referenced by:  cntrnsg  19223
  Copyright terms: Public domain W3C validator