| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. 2
⊢ ((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋 ⊆ 𝑍) → 𝑋 ∈ (SubGrp‘𝑀)) |
| 2 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋 ⊆ 𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ 𝑋)) → 𝑋 ⊆ 𝑍) |
| 3 | | simprr 772 |
. . . . . . . . 9
⊢ (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋 ⊆ 𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ 𝑋)) → 𝑦 ∈ 𝑋) |
| 4 | 2, 3 | sseldd 3959 |
. . . . . . . 8
⊢ (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋 ⊆ 𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ 𝑋)) → 𝑦 ∈ 𝑍) |
| 5 | | eqid 2735 |
. . . . . . . . . 10
⊢
(Base‘𝑀) =
(Base‘𝑀) |
| 6 | | eqid 2735 |
. . . . . . . . . 10
⊢
(Cntz‘𝑀) =
(Cntz‘𝑀) |
| 7 | 5, 6 | cntrval 19302 |
. . . . . . . . 9
⊢
((Cntz‘𝑀)‘(Base‘𝑀)) = (Cntr‘𝑀) |
| 8 | | cntrnsg.z |
. . . . . . . . 9
⊢ 𝑍 = (Cntr‘𝑀) |
| 9 | 7, 8 | eqtr4i 2761 |
. . . . . . . 8
⊢
((Cntz‘𝑀)‘(Base‘𝑀)) = 𝑍 |
| 10 | 4, 9 | eleqtrrdi 2845 |
. . . . . . 7
⊢ (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋 ⊆ 𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ 𝑋)) → 𝑦 ∈ ((Cntz‘𝑀)‘(Base‘𝑀))) |
| 11 | | simprl 770 |
. . . . . . 7
⊢ (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋 ⊆ 𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ 𝑋)) → 𝑥 ∈ (Base‘𝑀)) |
| 12 | | eqid 2735 |
. . . . . . . 8
⊢
(+g‘𝑀) = (+g‘𝑀) |
| 13 | 12, 6 | cntzi 19312 |
. . . . . . 7
⊢ ((𝑦 ∈ ((Cntz‘𝑀)‘(Base‘𝑀)) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)) |
| 14 | 10, 11, 13 | syl2anc 584 |
. . . . . 6
⊢ (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋 ⊆ 𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ 𝑋)) → (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)) |
| 15 | 14 | oveq1d 7420 |
. . . . 5
⊢ (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋 ⊆ 𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ 𝑋)) → ((𝑦(+g‘𝑀)𝑥)(-g‘𝑀)𝑥) = ((𝑥(+g‘𝑀)𝑦)(-g‘𝑀)𝑥)) |
| 16 | | subgrcl 19114 |
. . . . . . 7
⊢ (𝑋 ∈ (SubGrp‘𝑀) → 𝑀 ∈ Grp) |
| 17 | 16 | ad2antrr 726 |
. . . . . 6
⊢ (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋 ⊆ 𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ 𝑋)) → 𝑀 ∈ Grp) |
| 18 | 5 | subgss 19110 |
. . . . . . . 8
⊢ (𝑋 ∈ (SubGrp‘𝑀) → 𝑋 ⊆ (Base‘𝑀)) |
| 19 | 18 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋 ⊆ 𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ 𝑋)) → 𝑋 ⊆ (Base‘𝑀)) |
| 20 | 19, 3 | sseldd 3959 |
. . . . . 6
⊢ (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋 ⊆ 𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ 𝑋)) → 𝑦 ∈ (Base‘𝑀)) |
| 21 | | eqid 2735 |
. . . . . . 7
⊢
(-g‘𝑀) = (-g‘𝑀) |
| 22 | 5, 12, 21 | grppncan 19014 |
. . . . . 6
⊢ ((𝑀 ∈ Grp ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → ((𝑦(+g‘𝑀)𝑥)(-g‘𝑀)𝑥) = 𝑦) |
| 23 | 17, 20, 11, 22 | syl3anc 1373 |
. . . . 5
⊢ (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋 ⊆ 𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ 𝑋)) → ((𝑦(+g‘𝑀)𝑥)(-g‘𝑀)𝑥) = 𝑦) |
| 24 | 15, 23 | eqtr3d 2772 |
. . . 4
⊢ (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋 ⊆ 𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ 𝑋)) → ((𝑥(+g‘𝑀)𝑦)(-g‘𝑀)𝑥) = 𝑦) |
| 25 | 24, 3 | eqeltrd 2834 |
. . 3
⊢ (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋 ⊆ 𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ 𝑋)) → ((𝑥(+g‘𝑀)𝑦)(-g‘𝑀)𝑥) ∈ 𝑋) |
| 26 | 25 | ralrimivva 3187 |
. 2
⊢ ((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋 ⊆ 𝑍) → ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ 𝑋 ((𝑥(+g‘𝑀)𝑦)(-g‘𝑀)𝑥) ∈ 𝑋) |
| 27 | 5, 12, 21 | isnsg3 19143 |
. 2
⊢ (𝑋 ∈ (NrmSGrp‘𝑀) ↔ (𝑋 ∈ (SubGrp‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ 𝑋 ((𝑥(+g‘𝑀)𝑦)(-g‘𝑀)𝑥) ∈ 𝑋)) |
| 28 | 1, 26, 27 | sylanbrc 583 |
1
⊢ ((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋 ⊆ 𝑍) → 𝑋 ∈ (NrmSGrp‘𝑀)) |