MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntrsubgnsg Structured version   Visualization version   GIF version

Theorem cntrsubgnsg 19255
Description: A central subgroup is normal. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypothesis
Ref Expression
cntrnsg.z 𝑍 = (Cntr‘𝑀)
Assertion
Ref Expression
cntrsubgnsg ((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) → 𝑋 ∈ (NrmSGrp‘𝑀))

Proof of Theorem cntrsubgnsg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) → 𝑋 ∈ (SubGrp‘𝑀))
2 simplr 768 . . . . . . . . 9 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑋𝑍)
3 simprr 772 . . . . . . . . 9 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑦𝑋)
42, 3sseldd 3930 . . . . . . . 8 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑦𝑍)
5 eqid 2731 . . . . . . . . . 10 (Base‘𝑀) = (Base‘𝑀)
6 eqid 2731 . . . . . . . . . 10 (Cntz‘𝑀) = (Cntz‘𝑀)
75, 6cntrval 19231 . . . . . . . . 9 ((Cntz‘𝑀)‘(Base‘𝑀)) = (Cntr‘𝑀)
8 cntrnsg.z . . . . . . . . 9 𝑍 = (Cntr‘𝑀)
97, 8eqtr4i 2757 . . . . . . . 8 ((Cntz‘𝑀)‘(Base‘𝑀)) = 𝑍
104, 9eleqtrrdi 2842 . . . . . . 7 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑦 ∈ ((Cntz‘𝑀)‘(Base‘𝑀)))
11 simprl 770 . . . . . . 7 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑥 ∈ (Base‘𝑀))
12 eqid 2731 . . . . . . . 8 (+g𝑀) = (+g𝑀)
1312, 6cntzi 19241 . . . . . . 7 ((𝑦 ∈ ((Cntz‘𝑀)‘(Base‘𝑀)) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
1410, 11, 13syl2anc 584 . . . . . 6 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
1514oveq1d 7361 . . . . 5 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → ((𝑦(+g𝑀)𝑥)(-g𝑀)𝑥) = ((𝑥(+g𝑀)𝑦)(-g𝑀)𝑥))
16 subgrcl 19044 . . . . . . 7 (𝑋 ∈ (SubGrp‘𝑀) → 𝑀 ∈ Grp)
1716ad2antrr 726 . . . . . 6 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑀 ∈ Grp)
185subgss 19040 . . . . . . . 8 (𝑋 ∈ (SubGrp‘𝑀) → 𝑋 ⊆ (Base‘𝑀))
1918ad2antrr 726 . . . . . . 7 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑋 ⊆ (Base‘𝑀))
2019, 3sseldd 3930 . . . . . 6 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑦 ∈ (Base‘𝑀))
21 eqid 2731 . . . . . . 7 (-g𝑀) = (-g𝑀)
225, 12, 21grppncan 18944 . . . . . 6 ((𝑀 ∈ Grp ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → ((𝑦(+g𝑀)𝑥)(-g𝑀)𝑥) = 𝑦)
2317, 20, 11, 22syl3anc 1373 . . . . 5 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → ((𝑦(+g𝑀)𝑥)(-g𝑀)𝑥) = 𝑦)
2415, 23eqtr3d 2768 . . . 4 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → ((𝑥(+g𝑀)𝑦)(-g𝑀)𝑥) = 𝑦)
2524, 3eqeltrd 2831 . . 3 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → ((𝑥(+g𝑀)𝑦)(-g𝑀)𝑥) ∈ 𝑋)
2625ralrimivva 3175 . 2 ((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) → ∀𝑥 ∈ (Base‘𝑀)∀𝑦𝑋 ((𝑥(+g𝑀)𝑦)(-g𝑀)𝑥) ∈ 𝑋)
275, 12, 21isnsg3 19072 . 2 (𝑋 ∈ (NrmSGrp‘𝑀) ↔ (𝑋 ∈ (SubGrp‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦𝑋 ((𝑥(+g𝑀)𝑦)(-g𝑀)𝑥) ∈ 𝑋))
281, 26, 27sylanbrc 583 1 ((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) → 𝑋 ∈ (NrmSGrp‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  wss 3897  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  Grpcgrp 18846  -gcsg 18848  SubGrpcsubg 19033  NrmSGrpcnsg 19034  Cntzccntz 19227  Cntrccntr 19228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-nsg 19037  df-cntz 19229  df-cntr 19230
This theorem is referenced by:  cntrnsg  19256
  Copyright terms: Public domain W3C validator