Step | Hyp | Ref
| Expression |
1 | | elnn0 12235 |
. . 3
⊢ (𝑁 ∈ ℕ0
↔ (𝑁 ∈ ℕ
∨ 𝑁 =
0)) |
2 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑛 = 1 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟1)) |
3 | 2 | cnveqd 5784 |
. . . . . . 7
⊢ (𝑛 = 1 → ◡(𝑅↑𝑟𝑛) = ◡(𝑅↑𝑟1)) |
4 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑛 = 1 → (◡𝑅↑𝑟𝑛) = (◡𝑅↑𝑟1)) |
5 | 3, 4 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑛 = 1 → (◡(𝑅↑𝑟𝑛) = (◡𝑅↑𝑟𝑛) ↔ ◡(𝑅↑𝑟1) = (◡𝑅↑𝑟1))) |
6 | 5 | imbi2d 341 |
. . . . 5
⊢ (𝑛 = 1 → ((𝑅 ∈ 𝑉 → ◡(𝑅↑𝑟𝑛) = (◡𝑅↑𝑟𝑛)) ↔ (𝑅 ∈ 𝑉 → ◡(𝑅↑𝑟1) = (◡𝑅↑𝑟1)))) |
7 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟𝑚)) |
8 | 7 | cnveqd 5784 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → ◡(𝑅↑𝑟𝑛) = ◡(𝑅↑𝑟𝑚)) |
9 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → (◡𝑅↑𝑟𝑛) = (◡𝑅↑𝑟𝑚)) |
10 | 8, 9 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑛 = 𝑚 → (◡(𝑅↑𝑟𝑛) = (◡𝑅↑𝑟𝑛) ↔ ◡(𝑅↑𝑟𝑚) = (◡𝑅↑𝑟𝑚))) |
11 | 10 | imbi2d 341 |
. . . . 5
⊢ (𝑛 = 𝑚 → ((𝑅 ∈ 𝑉 → ◡(𝑅↑𝑟𝑛) = (◡𝑅↑𝑟𝑛)) ↔ (𝑅 ∈ 𝑉 → ◡(𝑅↑𝑟𝑚) = (◡𝑅↑𝑟𝑚)))) |
12 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑛 = (𝑚 + 1) → (𝑅↑𝑟𝑛) = (𝑅↑𝑟(𝑚 + 1))) |
13 | 12 | cnveqd 5784 |
. . . . . . 7
⊢ (𝑛 = (𝑚 + 1) → ◡(𝑅↑𝑟𝑛) = ◡(𝑅↑𝑟(𝑚 + 1))) |
14 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑛 = (𝑚 + 1) → (◡𝑅↑𝑟𝑛) = (◡𝑅↑𝑟(𝑚 + 1))) |
15 | 13, 14 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑛 = (𝑚 + 1) → (◡(𝑅↑𝑟𝑛) = (◡𝑅↑𝑟𝑛) ↔ ◡(𝑅↑𝑟(𝑚 + 1)) = (◡𝑅↑𝑟(𝑚 + 1)))) |
16 | 15 | imbi2d 341 |
. . . . 5
⊢ (𝑛 = (𝑚 + 1) → ((𝑅 ∈ 𝑉 → ◡(𝑅↑𝑟𝑛) = (◡𝑅↑𝑟𝑛)) ↔ (𝑅 ∈ 𝑉 → ◡(𝑅↑𝑟(𝑚 + 1)) = (◡𝑅↑𝑟(𝑚 + 1))))) |
17 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟𝑁)) |
18 | 17 | cnveqd 5784 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → ◡(𝑅↑𝑟𝑛) = ◡(𝑅↑𝑟𝑁)) |
19 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → (◡𝑅↑𝑟𝑛) = (◡𝑅↑𝑟𝑁)) |
20 | 18, 19 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (◡(𝑅↑𝑟𝑛) = (◡𝑅↑𝑟𝑛) ↔ ◡(𝑅↑𝑟𝑁) = (◡𝑅↑𝑟𝑁))) |
21 | 20 | imbi2d 341 |
. . . . 5
⊢ (𝑛 = 𝑁 → ((𝑅 ∈ 𝑉 → ◡(𝑅↑𝑟𝑛) = (◡𝑅↑𝑟𝑛)) ↔ (𝑅 ∈ 𝑉 → ◡(𝑅↑𝑟𝑁) = (◡𝑅↑𝑟𝑁)))) |
22 | | relexp1g 14737 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) |
23 | 22 | cnveqd 5784 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → ◡(𝑅↑𝑟1) = ◡𝑅) |
24 | | cnvexg 7771 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → ◡𝑅 ∈ V) |
25 | | relexp1g 14737 |
. . . . . . 7
⊢ (◡𝑅 ∈ V → (◡𝑅↑𝑟1) = ◡𝑅) |
26 | 24, 25 | syl 17 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (◡𝑅↑𝑟1) = ◡𝑅) |
27 | 23, 26 | eqtr4d 2781 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → ◡(𝑅↑𝑟1) = (◡𝑅↑𝑟1)) |
28 | | cnvco 5794 |
. . . . . . . . 9
⊢ ◡((𝑅↑𝑟𝑚) ∘ 𝑅) = (◡𝑅 ∘ ◡(𝑅↑𝑟𝑚)) |
29 | | simp3 1137 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ ◡(𝑅↑𝑟𝑚) = (◡𝑅↑𝑟𝑚)) → ◡(𝑅↑𝑟𝑚) = (◡𝑅↑𝑟𝑚)) |
30 | 29 | coeq2d 5771 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ ◡(𝑅↑𝑟𝑚) = (◡𝑅↑𝑟𝑚)) → (◡𝑅 ∘ ◡(𝑅↑𝑟𝑚)) = (◡𝑅 ∘ (◡𝑅↑𝑟𝑚))) |
31 | 28, 30 | eqtrid 2790 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ ◡(𝑅↑𝑟𝑚) = (◡𝑅↑𝑟𝑚)) → ◡((𝑅↑𝑟𝑚) ∘ 𝑅) = (◡𝑅 ∘ (◡𝑅↑𝑟𝑚))) |
32 | | simp2 1136 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ ◡(𝑅↑𝑟𝑚) = (◡𝑅↑𝑟𝑚)) → 𝑅 ∈ 𝑉) |
33 | | simp1 1135 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ ◡(𝑅↑𝑟𝑚) = (◡𝑅↑𝑟𝑚)) → 𝑚 ∈ ℕ) |
34 | | relexpsucnnr 14736 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑚 ∈ ℕ) → (𝑅↑𝑟(𝑚 + 1)) = ((𝑅↑𝑟𝑚) ∘ 𝑅)) |
35 | 32, 33, 34 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ ◡(𝑅↑𝑟𝑚) = (◡𝑅↑𝑟𝑚)) → (𝑅↑𝑟(𝑚 + 1)) = ((𝑅↑𝑟𝑚) ∘ 𝑅)) |
36 | 35 | cnveqd 5784 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ ◡(𝑅↑𝑟𝑚) = (◡𝑅↑𝑟𝑚)) → ◡(𝑅↑𝑟(𝑚 + 1)) = ◡((𝑅↑𝑟𝑚) ∘ 𝑅)) |
37 | 32, 24 | syl 17 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ ◡(𝑅↑𝑟𝑚) = (◡𝑅↑𝑟𝑚)) → ◡𝑅 ∈ V) |
38 | | relexpsucnnl 14741 |
. . . . . . . . 9
⊢ ((◡𝑅 ∈ V ∧ 𝑚 ∈ ℕ) → (◡𝑅↑𝑟(𝑚 + 1)) = (◡𝑅 ∘ (◡𝑅↑𝑟𝑚))) |
39 | 37, 33, 38 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ ◡(𝑅↑𝑟𝑚) = (◡𝑅↑𝑟𝑚)) → (◡𝑅↑𝑟(𝑚 + 1)) = (◡𝑅 ∘ (◡𝑅↑𝑟𝑚))) |
40 | 31, 36, 39 | 3eqtr4d 2788 |
. . . . . . 7
⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ ◡(𝑅↑𝑟𝑚) = (◡𝑅↑𝑟𝑚)) → ◡(𝑅↑𝑟(𝑚 + 1)) = (◡𝑅↑𝑟(𝑚 + 1))) |
41 | 40 | 3exp 1118 |
. . . . . 6
⊢ (𝑚 ∈ ℕ → (𝑅 ∈ 𝑉 → (◡(𝑅↑𝑟𝑚) = (◡𝑅↑𝑟𝑚) → ◡(𝑅↑𝑟(𝑚 + 1)) = (◡𝑅↑𝑟(𝑚 + 1))))) |
42 | 41 | a2d 29 |
. . . . 5
⊢ (𝑚 ∈ ℕ → ((𝑅 ∈ 𝑉 → ◡(𝑅↑𝑟𝑚) = (◡𝑅↑𝑟𝑚)) → (𝑅 ∈ 𝑉 → ◡(𝑅↑𝑟(𝑚 + 1)) = (◡𝑅↑𝑟(𝑚 + 1))))) |
43 | 6, 11, 16, 21, 27, 42 | nnind 11991 |
. . . 4
⊢ (𝑁 ∈ ℕ → (𝑅 ∈ 𝑉 → ◡(𝑅↑𝑟𝑁) = (◡𝑅↑𝑟𝑁))) |
44 | | cnvresid 6513 |
. . . . . . 7
⊢ ◡( I ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)) |
45 | | uncom 4087 |
. . . . . . . . 9
⊢ (dom
𝑅 ∪ ran 𝑅) = (ran 𝑅 ∪ dom 𝑅) |
46 | | df-rn 5600 |
. . . . . . . . . 10
⊢ ran 𝑅 = dom ◡𝑅 |
47 | | dfdm4 5804 |
. . . . . . . . . 10
⊢ dom 𝑅 = ran ◡𝑅 |
48 | 46, 47 | uneq12i 4095 |
. . . . . . . . 9
⊢ (ran
𝑅 ∪ dom 𝑅) = (dom ◡𝑅 ∪ ran ◡𝑅) |
49 | 45, 48 | eqtri 2766 |
. . . . . . . 8
⊢ (dom
𝑅 ∪ ran 𝑅) = (dom ◡𝑅 ∪ ran ◡𝑅) |
50 | 49 | reseq2i 5888 |
. . . . . . 7
⊢ ( I
↾ (dom 𝑅 ∪ ran
𝑅)) = ( I ↾ (dom
◡𝑅 ∪ ran ◡𝑅)) |
51 | 44, 50 | eqtri 2766 |
. . . . . 6
⊢ ◡( I ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ (dom ◡𝑅 ∪ ran ◡𝑅)) |
52 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑁 = 0 → (𝑅↑𝑟𝑁) = (𝑅↑𝑟0)) |
53 | | relexp0g 14733 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟0) = ( I ↾
(dom 𝑅 ∪ ran 𝑅))) |
54 | 52, 53 | sylan9eq 2798 |
. . . . . . 7
⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
55 | 54 | cnveqd 5784 |
. . . . . 6
⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → ◡(𝑅↑𝑟𝑁) = ◡( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
56 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑁 = 0 → (◡𝑅↑𝑟𝑁) = (◡𝑅↑𝑟0)) |
57 | 56 | adantr 481 |
. . . . . . 7
⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → (◡𝑅↑𝑟𝑁) = (◡𝑅↑𝑟0)) |
58 | | simpr 485 |
. . . . . . . 8
⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → 𝑅 ∈ 𝑉) |
59 | | relexp0g 14733 |
. . . . . . . 8
⊢ (◡𝑅 ∈ V → (◡𝑅↑𝑟0) = ( I ↾
(dom ◡𝑅 ∪ ran ◡𝑅))) |
60 | 58, 24, 59 | 3syl 18 |
. . . . . . 7
⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → (◡𝑅↑𝑟0) = ( I ↾
(dom ◡𝑅 ∪ ran ◡𝑅))) |
61 | 57, 60 | eqtrd 2778 |
. . . . . 6
⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → (◡𝑅↑𝑟𝑁) = ( I ↾ (dom ◡𝑅 ∪ ran ◡𝑅))) |
62 | 51, 55, 61 | 3eqtr4a 2804 |
. . . . 5
⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → ◡(𝑅↑𝑟𝑁) = (◡𝑅↑𝑟𝑁)) |
63 | 62 | ex 413 |
. . . 4
⊢ (𝑁 = 0 → (𝑅 ∈ 𝑉 → ◡(𝑅↑𝑟𝑁) = (◡𝑅↑𝑟𝑁))) |
64 | 43, 63 | jaoi 854 |
. . 3
⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑅 ∈ 𝑉 → ◡(𝑅↑𝑟𝑁) = (◡𝑅↑𝑟𝑁))) |
65 | 1, 64 | sylbi 216 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (𝑅 ∈ 𝑉 → ◡(𝑅↑𝑟𝑁) = (◡𝑅↑𝑟𝑁))) |
66 | 65 | imp 407 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝑅 ∈ 𝑉) → ◡(𝑅↑𝑟𝑁) = (◡𝑅↑𝑟𝑁)) |