MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpcnv Structured version   Visualization version   GIF version

Theorem relexpcnv 14390
Description: Commutation of converse and relation exponentiation. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpcnv ((𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟𝑁))

Proof of Theorem relexpcnv
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 11892 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 oveq2 7153 . . . . . . . 8 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
32cnveqd 5733 . . . . . . 7 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
4 oveq2 7153 . . . . . . 7 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
53, 4eqeq12d 2840 . . . . . 6 (𝑛 = 1 → ((𝑅𝑟𝑛) = (𝑅𝑟𝑛) ↔ (𝑅𝑟1) = (𝑅𝑟1)))
65imbi2d 344 . . . . 5 (𝑛 = 1 → ((𝑅𝑉(𝑅𝑟𝑛) = (𝑅𝑟𝑛)) ↔ (𝑅𝑉(𝑅𝑟1) = (𝑅𝑟1))))
7 oveq2 7153 . . . . . . . 8 (𝑛 = 𝑚 → (𝑅𝑟𝑛) = (𝑅𝑟𝑚))
87cnveqd 5733 . . . . . . 7 (𝑛 = 𝑚(𝑅𝑟𝑛) = (𝑅𝑟𝑚))
9 oveq2 7153 . . . . . . 7 (𝑛 = 𝑚 → (𝑅𝑟𝑛) = (𝑅𝑟𝑚))
108, 9eqeq12d 2840 . . . . . 6 (𝑛 = 𝑚 → ((𝑅𝑟𝑛) = (𝑅𝑟𝑛) ↔ (𝑅𝑟𝑚) = (𝑅𝑟𝑚)))
1110imbi2d 344 . . . . 5 (𝑛 = 𝑚 → ((𝑅𝑉(𝑅𝑟𝑛) = (𝑅𝑟𝑛)) ↔ (𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚))))
12 oveq2 7153 . . . . . . . 8 (𝑛 = (𝑚 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
1312cnveqd 5733 . . . . . . 7 (𝑛 = (𝑚 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
14 oveq2 7153 . . . . . . 7 (𝑛 = (𝑚 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
1513, 14eqeq12d 2840 . . . . . 6 (𝑛 = (𝑚 + 1) → ((𝑅𝑟𝑛) = (𝑅𝑟𝑛) ↔ (𝑅𝑟(𝑚 + 1)) = (𝑅𝑟(𝑚 + 1))))
1615imbi2d 344 . . . . 5 (𝑛 = (𝑚 + 1) → ((𝑅𝑉(𝑅𝑟𝑛) = (𝑅𝑟𝑛)) ↔ (𝑅𝑉(𝑅𝑟(𝑚 + 1)) = (𝑅𝑟(𝑚 + 1)))))
17 oveq2 7153 . . . . . . . 8 (𝑛 = 𝑁 → (𝑅𝑟𝑛) = (𝑅𝑟𝑁))
1817cnveqd 5733 . . . . . . 7 (𝑛 = 𝑁(𝑅𝑟𝑛) = (𝑅𝑟𝑁))
19 oveq2 7153 . . . . . . 7 (𝑛 = 𝑁 → (𝑅𝑟𝑛) = (𝑅𝑟𝑁))
2018, 19eqeq12d 2840 . . . . . 6 (𝑛 = 𝑁 → ((𝑅𝑟𝑛) = (𝑅𝑟𝑛) ↔ (𝑅𝑟𝑁) = (𝑅𝑟𝑁)))
2120imbi2d 344 . . . . 5 (𝑛 = 𝑁 → ((𝑅𝑉(𝑅𝑟𝑛) = (𝑅𝑟𝑛)) ↔ (𝑅𝑉(𝑅𝑟𝑁) = (𝑅𝑟𝑁))))
22 relexp1g 14381 . . . . . . 7 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
2322cnveqd 5733 . . . . . 6 (𝑅𝑉(𝑅𝑟1) = 𝑅)
24 cnvexg 7619 . . . . . . 7 (𝑅𝑉𝑅 ∈ V)
25 relexp1g 14381 . . . . . . 7 (𝑅 ∈ V → (𝑅𝑟1) = 𝑅)
2624, 25syl 17 . . . . . 6 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
2723, 26eqtr4d 2862 . . . . 5 (𝑅𝑉(𝑅𝑟1) = (𝑅𝑟1))
28 cnvco 5743 . . . . . . . . 9 ((𝑅𝑟𝑚) ∘ 𝑅) = (𝑅(𝑅𝑟𝑚))
29 simp3 1135 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → (𝑅𝑟𝑚) = (𝑅𝑟𝑚))
3029coeq2d 5720 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → (𝑅(𝑅𝑟𝑚)) = (𝑅 ∘ (𝑅𝑟𝑚)))
3128, 30syl5eq 2871 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → ((𝑅𝑟𝑚) ∘ 𝑅) = (𝑅 ∘ (𝑅𝑟𝑚)))
32 simp2 1134 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → 𝑅𝑉)
33 simp1 1133 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → 𝑚 ∈ ℕ)
34 relexpsucnnr 14380 . . . . . . . . . 10 ((𝑅𝑉𝑚 ∈ ℕ) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
3532, 33, 34syl2anc 587 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
3635cnveqd 5733 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
3732, 24syl 17 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → 𝑅 ∈ V)
38 relexpsucnnl 14387 . . . . . . . . 9 ((𝑅 ∈ V ∧ 𝑚 ∈ ℕ) → (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚)))
3937, 33, 38syl2anc 587 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚)))
4031, 36, 393eqtr4d 2869 . . . . . . 7 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → (𝑅𝑟(𝑚 + 1)) = (𝑅𝑟(𝑚 + 1)))
41403exp 1116 . . . . . 6 (𝑚 ∈ ℕ → (𝑅𝑉 → ((𝑅𝑟𝑚) = (𝑅𝑟𝑚) → (𝑅𝑟(𝑚 + 1)) = (𝑅𝑟(𝑚 + 1)))))
4241a2d 29 . . . . 5 (𝑚 ∈ ℕ → ((𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → (𝑅𝑉(𝑅𝑟(𝑚 + 1)) = (𝑅𝑟(𝑚 + 1)))))
436, 11, 16, 21, 27, 42nnind 11648 . . . 4 (𝑁 ∈ ℕ → (𝑅𝑉(𝑅𝑟𝑁) = (𝑅𝑟𝑁)))
44 cnvresid 6421 . . . . . . 7 ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))
45 uncom 4114 . . . . . . . . 9 (dom 𝑅 ∪ ran 𝑅) = (ran 𝑅 ∪ dom 𝑅)
46 df-rn 5553 . . . . . . . . . 10 ran 𝑅 = dom 𝑅
47 dfdm4 5751 . . . . . . . . . 10 dom 𝑅 = ran 𝑅
4846, 47uneq12i 4122 . . . . . . . . 9 (ran 𝑅 ∪ dom 𝑅) = (dom 𝑅 ∪ ran 𝑅)
4945, 48eqtri 2847 . . . . . . . 8 (dom 𝑅 ∪ ran 𝑅) = (dom 𝑅 ∪ ran 𝑅)
5049reseq2i 5837 . . . . . . 7 ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))
5144, 50eqtri 2847 . . . . . 6 ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))
52 oveq2 7153 . . . . . . . 8 (𝑁 = 0 → (𝑅𝑟𝑁) = (𝑅𝑟0))
53 relexp0g 14377 . . . . . . . 8 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
5452, 53sylan9eq 2879 . . . . . . 7 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
5554cnveqd 5733 . . . . . 6 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
56 oveq2 7153 . . . . . . . 8 (𝑁 = 0 → (𝑅𝑟𝑁) = (𝑅𝑟0))
5756adantr 484 . . . . . . 7 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
58 simpr 488 . . . . . . . 8 ((𝑁 = 0 ∧ 𝑅𝑉) → 𝑅𝑉)
59 relexp0g 14377 . . . . . . . 8 (𝑅 ∈ V → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
6058, 24, 593syl 18 . . . . . . 7 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
6157, 60eqtrd 2859 . . . . . 6 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
6251, 55, 613eqtr4a 2885 . . . . 5 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟𝑁))
6362ex 416 . . . 4 (𝑁 = 0 → (𝑅𝑉(𝑅𝑟𝑁) = (𝑅𝑟𝑁)))
6443, 63jaoi 854 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑅𝑉(𝑅𝑟𝑁) = (𝑅𝑟𝑁)))
651, 64sylbi 220 . 2 (𝑁 ∈ ℕ0 → (𝑅𝑉(𝑅𝑟𝑁) = (𝑅𝑟𝑁)))
6665imp 410 1 ((𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2115  Vcvv 3480  cun 3917   I cid 5446  ccnv 5541  dom cdm 5542  ran crn 5543  cres 5544  ccom 5546  (class class class)co 7145  0cc0 10529  1c1 10530   + caddc 10532  cn 11630  0cn0 11890  𝑟crelexp 14375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7571  df-2nd 7680  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-er 8279  df-en 8500  df-dom 8501  df-sdom 8502  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11891  df-z 11975  df-uz 12237  df-seq 13370  df-relexp 14376
This theorem is referenced by:  relexpcnvd  14391  relexpnnrn  14400  relexpaddg  14408  relexpaddss  40272  cnvtrclfv  40278
  Copyright terms: Public domain W3C validator