MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpcnv Structured version   Visualization version   GIF version

Theorem relexpcnv 15071
Description: Commutation of converse and relation exponentiation. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpcnv ((𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟𝑁))

Proof of Theorem relexpcnv
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 12526 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 oveq2 7439 . . . . . . . 8 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
32cnveqd 5889 . . . . . . 7 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
4 oveq2 7439 . . . . . . 7 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
53, 4eqeq12d 2751 . . . . . 6 (𝑛 = 1 → ((𝑅𝑟𝑛) = (𝑅𝑟𝑛) ↔ (𝑅𝑟1) = (𝑅𝑟1)))
65imbi2d 340 . . . . 5 (𝑛 = 1 → ((𝑅𝑉(𝑅𝑟𝑛) = (𝑅𝑟𝑛)) ↔ (𝑅𝑉(𝑅𝑟1) = (𝑅𝑟1))))
7 oveq2 7439 . . . . . . . 8 (𝑛 = 𝑚 → (𝑅𝑟𝑛) = (𝑅𝑟𝑚))
87cnveqd 5889 . . . . . . 7 (𝑛 = 𝑚(𝑅𝑟𝑛) = (𝑅𝑟𝑚))
9 oveq2 7439 . . . . . . 7 (𝑛 = 𝑚 → (𝑅𝑟𝑛) = (𝑅𝑟𝑚))
108, 9eqeq12d 2751 . . . . . 6 (𝑛 = 𝑚 → ((𝑅𝑟𝑛) = (𝑅𝑟𝑛) ↔ (𝑅𝑟𝑚) = (𝑅𝑟𝑚)))
1110imbi2d 340 . . . . 5 (𝑛 = 𝑚 → ((𝑅𝑉(𝑅𝑟𝑛) = (𝑅𝑟𝑛)) ↔ (𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚))))
12 oveq2 7439 . . . . . . . 8 (𝑛 = (𝑚 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
1312cnveqd 5889 . . . . . . 7 (𝑛 = (𝑚 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
14 oveq2 7439 . . . . . . 7 (𝑛 = (𝑚 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
1513, 14eqeq12d 2751 . . . . . 6 (𝑛 = (𝑚 + 1) → ((𝑅𝑟𝑛) = (𝑅𝑟𝑛) ↔ (𝑅𝑟(𝑚 + 1)) = (𝑅𝑟(𝑚 + 1))))
1615imbi2d 340 . . . . 5 (𝑛 = (𝑚 + 1) → ((𝑅𝑉(𝑅𝑟𝑛) = (𝑅𝑟𝑛)) ↔ (𝑅𝑉(𝑅𝑟(𝑚 + 1)) = (𝑅𝑟(𝑚 + 1)))))
17 oveq2 7439 . . . . . . . 8 (𝑛 = 𝑁 → (𝑅𝑟𝑛) = (𝑅𝑟𝑁))
1817cnveqd 5889 . . . . . . 7 (𝑛 = 𝑁(𝑅𝑟𝑛) = (𝑅𝑟𝑁))
19 oveq2 7439 . . . . . . 7 (𝑛 = 𝑁 → (𝑅𝑟𝑛) = (𝑅𝑟𝑁))
2018, 19eqeq12d 2751 . . . . . 6 (𝑛 = 𝑁 → ((𝑅𝑟𝑛) = (𝑅𝑟𝑛) ↔ (𝑅𝑟𝑁) = (𝑅𝑟𝑁)))
2120imbi2d 340 . . . . 5 (𝑛 = 𝑁 → ((𝑅𝑉(𝑅𝑟𝑛) = (𝑅𝑟𝑛)) ↔ (𝑅𝑉(𝑅𝑟𝑁) = (𝑅𝑟𝑁))))
22 relexp1g 15062 . . . . . . 7 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
2322cnveqd 5889 . . . . . 6 (𝑅𝑉(𝑅𝑟1) = 𝑅)
24 cnvexg 7947 . . . . . . 7 (𝑅𝑉𝑅 ∈ V)
25 relexp1g 15062 . . . . . . 7 (𝑅 ∈ V → (𝑅𝑟1) = 𝑅)
2624, 25syl 17 . . . . . 6 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
2723, 26eqtr4d 2778 . . . . 5 (𝑅𝑉(𝑅𝑟1) = (𝑅𝑟1))
28 cnvco 5899 . . . . . . . . 9 ((𝑅𝑟𝑚) ∘ 𝑅) = (𝑅(𝑅𝑟𝑚))
29 simp3 1137 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → (𝑅𝑟𝑚) = (𝑅𝑟𝑚))
3029coeq2d 5876 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → (𝑅(𝑅𝑟𝑚)) = (𝑅 ∘ (𝑅𝑟𝑚)))
3128, 30eqtrid 2787 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → ((𝑅𝑟𝑚) ∘ 𝑅) = (𝑅 ∘ (𝑅𝑟𝑚)))
32 simp2 1136 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → 𝑅𝑉)
33 simp1 1135 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → 𝑚 ∈ ℕ)
34 relexpsucnnr 15061 . . . . . . . . . 10 ((𝑅𝑉𝑚 ∈ ℕ) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
3532, 33, 34syl2anc 584 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
3635cnveqd 5889 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
3732, 24syl 17 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → 𝑅 ∈ V)
38 relexpsucnnl 15066 . . . . . . . . 9 ((𝑅 ∈ V ∧ 𝑚 ∈ ℕ) → (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚)))
3937, 33, 38syl2anc 584 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚)))
4031, 36, 393eqtr4d 2785 . . . . . . 7 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → (𝑅𝑟(𝑚 + 1)) = (𝑅𝑟(𝑚 + 1)))
41403exp 1118 . . . . . 6 (𝑚 ∈ ℕ → (𝑅𝑉 → ((𝑅𝑟𝑚) = (𝑅𝑟𝑚) → (𝑅𝑟(𝑚 + 1)) = (𝑅𝑟(𝑚 + 1)))))
4241a2d 29 . . . . 5 (𝑚 ∈ ℕ → ((𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → (𝑅𝑉(𝑅𝑟(𝑚 + 1)) = (𝑅𝑟(𝑚 + 1)))))
436, 11, 16, 21, 27, 42nnind 12282 . . . 4 (𝑁 ∈ ℕ → (𝑅𝑉(𝑅𝑟𝑁) = (𝑅𝑟𝑁)))
44 cnvresid 6647 . . . . . . 7 ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))
45 uncom 4168 . . . . . . . . 9 (dom 𝑅 ∪ ran 𝑅) = (ran 𝑅 ∪ dom 𝑅)
46 df-rn 5700 . . . . . . . . . 10 ran 𝑅 = dom 𝑅
47 dfdm4 5909 . . . . . . . . . 10 dom 𝑅 = ran 𝑅
4846, 47uneq12i 4176 . . . . . . . . 9 (ran 𝑅 ∪ dom 𝑅) = (dom 𝑅 ∪ ran 𝑅)
4945, 48eqtri 2763 . . . . . . . 8 (dom 𝑅 ∪ ran 𝑅) = (dom 𝑅 ∪ ran 𝑅)
5049reseq2i 5997 . . . . . . 7 ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))
5144, 50eqtri 2763 . . . . . 6 ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))
52 oveq2 7439 . . . . . . . 8 (𝑁 = 0 → (𝑅𝑟𝑁) = (𝑅𝑟0))
53 relexp0g 15058 . . . . . . . 8 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
5452, 53sylan9eq 2795 . . . . . . 7 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
5554cnveqd 5889 . . . . . 6 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
56 oveq2 7439 . . . . . . . 8 (𝑁 = 0 → (𝑅𝑟𝑁) = (𝑅𝑟0))
5756adantr 480 . . . . . . 7 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
58 simpr 484 . . . . . . . 8 ((𝑁 = 0 ∧ 𝑅𝑉) → 𝑅𝑉)
59 relexp0g 15058 . . . . . . . 8 (𝑅 ∈ V → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
6058, 24, 593syl 18 . . . . . . 7 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
6157, 60eqtrd 2775 . . . . . 6 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
6251, 55, 613eqtr4a 2801 . . . . 5 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟𝑁))
6362ex 412 . . . 4 (𝑁 = 0 → (𝑅𝑉(𝑅𝑟𝑁) = (𝑅𝑟𝑁)))
6443, 63jaoi 857 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑅𝑉(𝑅𝑟𝑁) = (𝑅𝑟𝑁)))
651, 64sylbi 217 . 2 (𝑁 ∈ ℕ0 → (𝑅𝑉(𝑅𝑟𝑁) = (𝑅𝑟𝑁)))
6665imp 406 1 ((𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  cun 3961   I cid 5582  ccnv 5688  dom cdm 5689  ran crn 5690  cres 5691  ccom 5693  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156  cn 12264  0cn0 12524  𝑟crelexp 15055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-seq 14040  df-relexp 15056
This theorem is referenced by:  relexpcnvd  15072  relexpnnrn  15081  relexpaddg  15089  cnvtrclfv  43714
  Copyright terms: Public domain W3C validator