MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpcnv Structured version   Visualization version   GIF version

Theorem relexpcnv 15001
Description: Commutation of converse and relation exponentiation. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpcnv ((𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟𝑁))

Proof of Theorem relexpcnv
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 12444 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 oveq2 7395 . . . . . . . 8 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
32cnveqd 5839 . . . . . . 7 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
4 oveq2 7395 . . . . . . 7 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
53, 4eqeq12d 2745 . . . . . 6 (𝑛 = 1 → ((𝑅𝑟𝑛) = (𝑅𝑟𝑛) ↔ (𝑅𝑟1) = (𝑅𝑟1)))
65imbi2d 340 . . . . 5 (𝑛 = 1 → ((𝑅𝑉(𝑅𝑟𝑛) = (𝑅𝑟𝑛)) ↔ (𝑅𝑉(𝑅𝑟1) = (𝑅𝑟1))))
7 oveq2 7395 . . . . . . . 8 (𝑛 = 𝑚 → (𝑅𝑟𝑛) = (𝑅𝑟𝑚))
87cnveqd 5839 . . . . . . 7 (𝑛 = 𝑚(𝑅𝑟𝑛) = (𝑅𝑟𝑚))
9 oveq2 7395 . . . . . . 7 (𝑛 = 𝑚 → (𝑅𝑟𝑛) = (𝑅𝑟𝑚))
108, 9eqeq12d 2745 . . . . . 6 (𝑛 = 𝑚 → ((𝑅𝑟𝑛) = (𝑅𝑟𝑛) ↔ (𝑅𝑟𝑚) = (𝑅𝑟𝑚)))
1110imbi2d 340 . . . . 5 (𝑛 = 𝑚 → ((𝑅𝑉(𝑅𝑟𝑛) = (𝑅𝑟𝑛)) ↔ (𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚))))
12 oveq2 7395 . . . . . . . 8 (𝑛 = (𝑚 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
1312cnveqd 5839 . . . . . . 7 (𝑛 = (𝑚 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
14 oveq2 7395 . . . . . . 7 (𝑛 = (𝑚 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
1513, 14eqeq12d 2745 . . . . . 6 (𝑛 = (𝑚 + 1) → ((𝑅𝑟𝑛) = (𝑅𝑟𝑛) ↔ (𝑅𝑟(𝑚 + 1)) = (𝑅𝑟(𝑚 + 1))))
1615imbi2d 340 . . . . 5 (𝑛 = (𝑚 + 1) → ((𝑅𝑉(𝑅𝑟𝑛) = (𝑅𝑟𝑛)) ↔ (𝑅𝑉(𝑅𝑟(𝑚 + 1)) = (𝑅𝑟(𝑚 + 1)))))
17 oveq2 7395 . . . . . . . 8 (𝑛 = 𝑁 → (𝑅𝑟𝑛) = (𝑅𝑟𝑁))
1817cnveqd 5839 . . . . . . 7 (𝑛 = 𝑁(𝑅𝑟𝑛) = (𝑅𝑟𝑁))
19 oveq2 7395 . . . . . . 7 (𝑛 = 𝑁 → (𝑅𝑟𝑛) = (𝑅𝑟𝑁))
2018, 19eqeq12d 2745 . . . . . 6 (𝑛 = 𝑁 → ((𝑅𝑟𝑛) = (𝑅𝑟𝑛) ↔ (𝑅𝑟𝑁) = (𝑅𝑟𝑁)))
2120imbi2d 340 . . . . 5 (𝑛 = 𝑁 → ((𝑅𝑉(𝑅𝑟𝑛) = (𝑅𝑟𝑛)) ↔ (𝑅𝑉(𝑅𝑟𝑁) = (𝑅𝑟𝑁))))
22 relexp1g 14992 . . . . . . 7 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
2322cnveqd 5839 . . . . . 6 (𝑅𝑉(𝑅𝑟1) = 𝑅)
24 cnvexg 7900 . . . . . . 7 (𝑅𝑉𝑅 ∈ V)
25 relexp1g 14992 . . . . . . 7 (𝑅 ∈ V → (𝑅𝑟1) = 𝑅)
2624, 25syl 17 . . . . . 6 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
2723, 26eqtr4d 2767 . . . . 5 (𝑅𝑉(𝑅𝑟1) = (𝑅𝑟1))
28 cnvco 5849 . . . . . . . . 9 ((𝑅𝑟𝑚) ∘ 𝑅) = (𝑅(𝑅𝑟𝑚))
29 simp3 1138 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → (𝑅𝑟𝑚) = (𝑅𝑟𝑚))
3029coeq2d 5826 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → (𝑅(𝑅𝑟𝑚)) = (𝑅 ∘ (𝑅𝑟𝑚)))
3128, 30eqtrid 2776 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → ((𝑅𝑟𝑚) ∘ 𝑅) = (𝑅 ∘ (𝑅𝑟𝑚)))
32 simp2 1137 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → 𝑅𝑉)
33 simp1 1136 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → 𝑚 ∈ ℕ)
34 relexpsucnnr 14991 . . . . . . . . . 10 ((𝑅𝑉𝑚 ∈ ℕ) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
3532, 33, 34syl2anc 584 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
3635cnveqd 5839 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
3732, 24syl 17 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → 𝑅 ∈ V)
38 relexpsucnnl 14996 . . . . . . . . 9 ((𝑅 ∈ V ∧ 𝑚 ∈ ℕ) → (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚)))
3937, 33, 38syl2anc 584 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚)))
4031, 36, 393eqtr4d 2774 . . . . . . 7 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → (𝑅𝑟(𝑚 + 1)) = (𝑅𝑟(𝑚 + 1)))
41403exp 1119 . . . . . 6 (𝑚 ∈ ℕ → (𝑅𝑉 → ((𝑅𝑟𝑚) = (𝑅𝑟𝑚) → (𝑅𝑟(𝑚 + 1)) = (𝑅𝑟(𝑚 + 1)))))
4241a2d 29 . . . . 5 (𝑚 ∈ ℕ → ((𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → (𝑅𝑉(𝑅𝑟(𝑚 + 1)) = (𝑅𝑟(𝑚 + 1)))))
436, 11, 16, 21, 27, 42nnind 12204 . . . 4 (𝑁 ∈ ℕ → (𝑅𝑉(𝑅𝑟𝑁) = (𝑅𝑟𝑁)))
44 cnvresid 6595 . . . . . . 7 ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))
45 uncom 4121 . . . . . . . . 9 (dom 𝑅 ∪ ran 𝑅) = (ran 𝑅 ∪ dom 𝑅)
46 df-rn 5649 . . . . . . . . . 10 ran 𝑅 = dom 𝑅
47 dfdm4 5859 . . . . . . . . . 10 dom 𝑅 = ran 𝑅
4846, 47uneq12i 4129 . . . . . . . . 9 (ran 𝑅 ∪ dom 𝑅) = (dom 𝑅 ∪ ran 𝑅)
4945, 48eqtri 2752 . . . . . . . 8 (dom 𝑅 ∪ ran 𝑅) = (dom 𝑅 ∪ ran 𝑅)
5049reseq2i 5947 . . . . . . 7 ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))
5144, 50eqtri 2752 . . . . . 6 ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))
52 oveq2 7395 . . . . . . . 8 (𝑁 = 0 → (𝑅𝑟𝑁) = (𝑅𝑟0))
53 relexp0g 14988 . . . . . . . 8 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
5452, 53sylan9eq 2784 . . . . . . 7 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
5554cnveqd 5839 . . . . . 6 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
56 oveq2 7395 . . . . . . . 8 (𝑁 = 0 → (𝑅𝑟𝑁) = (𝑅𝑟0))
5756adantr 480 . . . . . . 7 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
58 simpr 484 . . . . . . . 8 ((𝑁 = 0 ∧ 𝑅𝑉) → 𝑅𝑉)
59 relexp0g 14988 . . . . . . . 8 (𝑅 ∈ V → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
6058, 24, 593syl 18 . . . . . . 7 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
6157, 60eqtrd 2764 . . . . . 6 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
6251, 55, 613eqtr4a 2790 . . . . 5 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟𝑁))
6362ex 412 . . . 4 (𝑁 = 0 → (𝑅𝑉(𝑅𝑟𝑁) = (𝑅𝑟𝑁)))
6443, 63jaoi 857 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑅𝑉(𝑅𝑟𝑁) = (𝑅𝑟𝑁)))
651, 64sylbi 217 . 2 (𝑁 ∈ ℕ0 → (𝑅𝑉(𝑅𝑟𝑁) = (𝑅𝑟𝑁)))
6665imp 406 1 ((𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  cun 3912   I cid 5532  ccnv 5637  dom cdm 5638  ran crn 5639  cres 5640  ccom 5642  (class class class)co 7387  0cc0 11068  1c1 11069   + caddc 11071  cn 12186  0cn0 12442  𝑟crelexp 14985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-seq 13967  df-relexp 14986
This theorem is referenced by:  relexpcnvd  15002  relexpnnrn  15011  relexpaddg  15019  cnvtrclfv  43713
  Copyright terms: Public domain W3C validator